立体几何 一

发布 2022-10-11 00:43:28 阅读 8684

柱、锥、台、表面积

命制人:曹丽丽。

一、 学习目标。

了解棱柱、棱锥、台的表面积的计算公式(不要求记忆公式);能运用柱、锥、台的表面积进行计算和解决有关实际问题。

二、知识要点。

三、典例分析。

例1、 已知圆台的上下底面半径分别是,且侧面面积等于两底面面积之和,求该圆台的母线长。

例2、一个正三棱柱的三视图如右图所示,求这个正三棱柱的表面积。

例3、牧民居住的蒙古包的形状是一个圆柱与圆锥的组合体,尺寸如右图所示,请你帮助算出要搭建这样的一个蒙古包至少需要多少平方米的篷布?(精确到0.01 m2)

例4、有一根长为10 cm,底面半径是0.5 cm的圆柱形铁管,用一段铁丝在铁管上缠绕8圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为多少厘米?(精确到0.

01 cm)

四、变式训练。

1.用长为4,宽为2的矩形做侧面围成一个圆柱,此圆柱轴截面面积为( )

a. 8 bcd.

2.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为,则圆台较小底面的半径为( )

a. 7b. 6c. 5d. 3

3.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )

a. b. cd.

4.一个直棱柱(侧棱垂直于底面的棱柱)的底面是菱形,棱柱的对角线长分别是9cm和15cm,高是5cm,则这个直棱柱的侧面积是( )

a. 160 cm2 b. 320 cm2 c. cm2 d. cm2

5.如图,已知圆柱体底面圆的半径为,高为2,分别是两底面的直径,是母线.若一只小虫从a点出发,从侧面爬行到点,则小虫爬行的最短路线的长度是 (结果保留根式).

6.已知两个母线长相等的圆锥的侧面展开图恰能拼成一个圆,且它们的侧面积之比为1:2,则它们的高之比为。

7.六棱台的上、下底面均是正六边形,边长分别是8 cm和18 cm,侧面是全等的等腰梯形,侧棱长为13 cm,求它的表面积。

五、高考链接。

1.(湖北卷)四面体abcd四个面的重心分别为e、f、g、h,则四面体efgh的表面积与四面体abcd的表面积的比值是( )

a. b. c. d.

2. 某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )a.b.

c. d.

b. c. d.

立体几何《一》

3 如图,四棱锥的底面为正方形,侧棱底面,且,分别是线段的中点。1 求证 平面 2 求证 平面 3 求二面角的大小。6 如图,三棱柱abc a1b1c1中,aa1 面abc,bc ac,bc ac 2,aa1 3,d为ac的中点。1 求证 ab1 面bdc1 2 求二面角c1 bd c的余弦值 3 ...

立体几何 一 答案

立体几何 一 答案。1 解析 连结af,因为ef ef f,所以平面efg 平面abcd,又易证 所以,即,即,又m为ad 的中点,所以,又因为 d,所以 m,所以四边形amgf是平行四边形,故gm fa,又因为 平面 fa平面 所以 平面 取ab的中点o,连结co,因为 所以co ab,又因为 平...

高一立体几何

1 如图,一简单几何体的一个面内接于圆,分别是的中点,是圆的直径,四边形为平行四边形,且平面。1 求证 平面 2 若,试求该几何体的v.2 如图,在四棱锥p abcd中,底面abcd为直角梯形,ad bc,adc 90 平面pad 底面abcd,q为ad的中点,pa pd 2,bc m是棱pc的中点...