1. 直线与圆锥曲线的位置关系。
1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点.
2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断.设直线l的方程为ax+by+c=0,圆锥曲线方程f(x,y)=0.
由,消元。如消去y后得ax2+bx+c=0.
若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行或重合.
若a≠0,设δ=b2-4ac.
a.δ>0时,直线和圆锥曲线相交于不同两点;
b.δ=0时,直线和圆锥曲线相切于一点;
c.δ<0时,直线和圆锥曲线没有公共点.
2. 直线与圆锥曲线相交时的弦长问题。
1)斜率为k的直线与圆锥曲线交于两点p1(x1,y1),p2(x2,y2),则所得弦长|p1p2|=|x1-x2|或|p1p2|=|y1-y2|.
2)当斜率k不存在时,可求出交点坐标,直接运算(利用轴上两点间距离公式).
3. 圆锥曲线的中点弦问题。
遇到中点弦问题常用“根与系数的关系”或“点差法”求解.在椭圆+=1中,以p(x0,y0)为中点的弦所在直线的斜率k=-;在双曲线-=1中,以p(x0,y0)为中点的弦所在直线的斜率k=;在抛物线y2=2px (p>0)中,以p(x0,y0)为中点的弦所在直线的斜率k=.
难点正本疑点清源]
1. 直线和圆锥曲线问题解法的一般规律。
联立方程求交点,根与系数的关系求弦长,根的分布找范围,曲线定义不能忘”.
2. “点差法”的常见题型。
求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式δ>0是否成立.
1. 已知f1、f2为椭圆+=1的两个焦点,过f1的直线交椭圆于a、b两点.若|f2a|+|f2b|=12,则|ab
答案 8解析由题意知(|af1|+|af2|)+bf1|+|bf2|)=ab|+|af2|+|bf2|=2a+2a,又由a=5,可得|ab|+(bf2|+|af2|)=20,即|ab|=8.
2. 已知双曲线方程是x2-=1,过定点p(2,1)作直线交双曲线于p1,p2两点,并使p(2,1)为p1p2的中点,则此直线方程是。
答案 4x-y-7=0
解析设点p1(x1,y1),p2(x2,y2),则由x-=1,x-=1,得k===4,从而所求方程为4x-y-7=0.将此直线方程与双曲线方程联立得14x2-56x+51=0,δ>0,故此直线满足条件.
3. 过抛物线y2=4x的焦点作直线交抛物线于点a(x1,y1),b(x2,y2),若|ab|=7,则ab的中点m到抛物线准线的距离为。
abc.2d.3
答案 b4. 设坐标原点为o,抛物线y2=2x与过焦点的直线交于a、b两点,则·等于( )
abc.3d.-3
答案 b解析方法一 (特殊值法)
抛物线的焦点为f,过f且垂直于x轴的直线交抛物线于a(,1),b(,-1),·1=-.
方法二设a(x1,y1),b(x2,y2),则·=x1x2+y1y2.
由抛物线的过焦点的弦的性质知:
x1x2==,y1y2=-p2=-1.
题型一圆锥曲线中的范围、最值问题。
例1 已知抛物线c:y2=4x,过点a(-1,0)的直线交抛物线c于p、q两点,设=λ.
1)若点p关于x轴的对称点为m,求证:直线mq经过抛物线c的焦点f;
2)若λ∈,求|pq|的最大值.
思维启迪:(1)可利用向量共线证明直线mq过f;(2)建立|pq|和λ的关系,然后求最值.
1)证明设p(x1,y1),q(x2,y2),m(x1,-y1).
=λ,x1+1=λ(x2+1),y1=λy2,y=λ2y,y=4x1,y=4x2,x1=λ2x2,λ2x2+1=λ(x2+1),λx2(λ-1)=λ1,λ≠1,∴x2=,x1=λ,又f(1,0),=1-x1,y1)=(1-λ,y2)
λ=λ直线mq经过抛物线c的焦点f.
2)解由(1)知x2=,x1=λ,得x1x2=1,y·y=16x1x2=16,y1y2>0,∴y1y2=4,则|pq|2=(x1-x2)2+(y1-y2)2
x+x+y+y-2(x1x2+y1y2)
2-16,∈,当λ+=即λ=时,|pq|2有最大值,|pq|的最大值为。
**提高圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.
(2012·四川)如图,动点m与两定点a(-1,0)、b(1,0)构成△mab,且直线ma、mb的斜率之积为4.设动点m的轨迹为c.
1)求轨迹c的方程.
2)设直线y=x+m(m>0)与y轴相交于点p,与轨迹c相交于点q,r,且|pq|<|pr|.求的取值范围.
解 (1)设m的坐标为(x,y),当x=-1时,直线ma的斜率不存在;
当x=1时,直线mb的斜率不存在.于是x≠1且x≠-1.
此时,ma的斜率为,mb的斜率为。
由题意,有·=4.化简可得,4x2-y2-4=0.
故动点m的轨迹c的方程为4x2-y2-4=0(x≠1且x≠-1).
2)由。消去y,可得3x2-2mx-m2-4=0.(*
对于方程(*)其判别式。
=(-2m)2-4×3(-m2-4)=16m2+48>0,而当1或-1为方程(*)的根时,m的值为-1或1.
结合题设(m>0)可知,m>0且m≠1.
设q、r的坐标分别为(xq,yq),(xr,yr),则xq,xr为方程(*)的两根.
因为|pq|<|pr|,所以|xq|<|xr|,xq=,xr=.
所以===1+.
此时》1,且≠2,所以1<1+<3,且1+≠,所以1<=<3,且=≠.
综上所述,的取值范围是∪.
题型二圆锥曲线中的定点、定值问题。
例2 已知椭圆c经过点a,两个焦点为(-1,0)、(1,0).
1)求椭圆c的方程;
2)e、f是椭圆c上的两个动点,如果直线ae的斜率与af的斜率互为相反数,证明直线ef的斜率为定值,并求出这个定值.
思维启迪:可设直线ae的斜率来计算直线ef的斜率,通过推理计算消参.
1)解由题意,c=1,可设椭圆方程为+=1.
因为a在椭圆上,所以+=1,解得b2=3,b2=-(舍去),所以椭圆方程为+=1.
2)证明设直线ae的方程为y=k(x-1)+,代入+=1.
得(3+4k2)x2+4k(3-2k)x+42-12=0.
设e(xe,ye),f(xf,yf).
因为点a在椭圆上,所以xe=,ye=kxe+-k.又直线af的斜率与ae的斜率互为相反数,在上式中以-k代替k,可得xf=,yf=-kxf++k,所以直线ef的斜率。
kef===即直线ef的斜率为定值,其值为。
**提高求定值问题常见的方法有两种:
1)从特殊入手,求出定值,再证明这个值与变量无关.
2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
椭圆c的中心在坐标原点,焦点在x轴上,该椭圆经过点p且离心率为。
1)求椭圆c的标准方程;
2)若直线l:y=kx+m与椭圆c相交于a,b两点(a,b不是左,右顶点),且以ab为直径的圆过椭圆c的右顶点,求证:直线l过定点,并求出该定点的坐标.
1)解设椭圆方程为+=1 (a>b>0),由e==,得a=2c,a2=b2+c2,∴b2=3c2,则椭圆方程变为+=1.
又椭圆过点p,将其代入求得c2=1,故a2=4,b2=3,即得椭圆的标准方程为+=1.
2)证明设a(x1,y1),b(x2,y2),联立。
得(3+4k2)x2+8mkx+4(m2-3)=0.
则①又y1y2=(kx1+m)(kx2+m)
圆锥曲线与直线
课时作业 六十八 1 已知抛物线y2 2px p 0 的焦点f与双曲线 1的一个焦点重合,直线y x 4与抛物线交于a,b两点,则 ab 等于 a 28b 32 c 20 d 40 2 已知ab为半圆的直径,p为半圆上一点,以a b为焦点且过点p作椭圆,当点p在半圆上移动时,椭圆的离心率有 a 最大...
直线与圆锥曲线
教学目标 能综合应用直线与圆锥曲线的有关知识解题。一 基础题 1 设抛物线y2 8x的准线与x轴交于点q,若过点q的直线l与抛物线有公共点,则直线l的斜率的取值范围是。a b 2,2 c 1,1 d 4,4 2 已知双曲线中心在原点且一个焦点为f,直线与其相交于m n两点,mn中点的横坐标为,则此双...
直线与圆锥曲线
2.5 直线与圆锥曲线。学习目标 1.清楚直线与圆锥曲线的三种位置关系 2.会用坐标法求解直线与圆锥曲线的有关问题。3.大胆质疑,积极讨论,高效学习,勇于展示自己的观点与解法,以极度的热情投入到合作与学习中,体验学习的快乐。学法指导 1.预习教材p67 p70,找出疑惑之处。2.根据学案的提示,课前...