(满分120分,时间90分钟)班级姓名得分。
一、填空题(本大题共有10小题,每题4分,共40分)
1.在△abc中,∠c=90°,a=,c=2,则b=__
2.同时抛掷两枚正方体骰子,所得点数之和为7的概率是。
3.设a>b>0,a2+b2=4ab,则的值等于第4题)
4.如图,在△abc中,ab=ac,∠bad=20,且ae=ad,则∠cde
5.已知实数x、y满足x2-2x+4y=5,则x+2y的最大值为___
6.如图,已知梯形abcd中,ad∥bc,∠b=90°,ad=3,bc=5,ab=1,把线段cd绕点d逆时针旋转90°到de位置,连结ae,则ae的长为。
7.将正偶数按下表排列:
根据上面的规律,则2006所在行、列分别是。
8.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的所有可能的值之和为。
9.因式分解。
10.若抛物线y=x2+2x+c的顶点在x轴上,则c
二、选择题(本大题共10小题,每小题4分,共40分)
11.下列计算结果正确的是 (
a) (b) (c) (d)
12.用弧长为8的扇形做成圆锥的侧面,那么这个圆锥的底面半径为( )
a)4 (b)8 (c)4d)8
13.已知a、b、c为非零实数,且满足===k,则一次函数y=kx+(1+k)的图象一定经过( )
a)第。一、二、三象限 (b)第。
二、四象限 (c)第一象限 (d)第二象限。
14.将直径为64cm的圆形铁皮,做成四个相同圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的高为( )
a)8cm (b)8cm (c)16cm (d)16cm
15.甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么这四名运动员在比赛过程中的接棒顺序有( )
a)3种 (b)4种 (c) 6种 (d)12种。
16.如图,把一个边长为1的正方形经过三次对折后沿中位线(虚线)剪下,则剩下图形展开得到的图形的面积为( )
a) (b) (c) (d)
17.如图,圆柱形开口杯底部固定在长方体水池底,向水池匀速注入水(倒在杯外),水池中水面高度是h,注水时间为t,则h与t之间的关系大致为下图中的( )
a b c d
18.关于x的不等式组只有4个整数解,则a的取值范围是( )
a)-5≤a≤- b)-5≤a<- c)-5<a≤- d)-5<a<-
19.已知如图,则不含阴影部分的矩形的个数是( )
a)15 (b)24 (c)25 (d)26
20.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都等于s,又填在图中三格中的数字如图,若要能填成,则( )
a)s=24 (b)s=30 (c)s=31 (d)s=39
三、解答题(本大题共4小题,满分40分).
21.(本题10分)在“3.15”消费者权益日的活动中,对甲、乙两家商场售后服务的满意度进行了抽查.如图反映了被抽查用户对两家商场售后服务的满意程度(以下称:用户满意度),分为很不满意、不满意、较满意、很满意四个等级,并依次记为1分、2分、3分、4分.
1)请问:甲商场的用户满意度分数的众数为___乙商场的用户满意度分数的众数为___
2)分别求出甲、乙两商场的用户满意度分数的平均值(计算结果精确到0.01).
3)请你根据所学的统计知识,判断哪家商场的用户满意度较高,并简要说明理由.
22.(本题10分)已知,如图,△abc是等边三角形,过ac边上的点d作dg∥bc,交ab于点g,在gd的延长线上取点e,使de=dc,连接ae、bd.
1)求证:△age≌△dab
2)过点e作ef∥db,交bc于点f,连af,求∠afe的度数.
23.(本题10分)某公司开发的960件新产品,需加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用20天,而乙工厂每天比甲工厂多加工8件产品.在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.
1)甲、乙两个工厂每天各能加工多少件新产品?
2)该公司要选择省时又省钱的工厂加工,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,才可满足公司要求,有望加工这批产品.
24.(本题10分)甲、乙二人同时从a地出发,沿同一条道路去b地,途中都使用两种不同的速度与(),甲前一半的路程使用速度、后一半的路程使用速度;乙前一半的时间使用速度,后一半的时间使用速度.
1)甲、乙二人从a地到达b地的平均速度各是多少(用和表示)?
2)甲、乙二人谁先到达b地?为什么?
3)如图是甲从a地到达b地的路程与时间的函数图像,请你在图中画出相应的乙从a地到达b地的路程与时间的函数图像.
九年级数学参***。
一.填空题(本大题共有8小题,每题4分,共32分).
1.1 2. 3. 4.10° 5. 6.2 7.第45行,第13列 8.38 9.a(b+5)(b-5) 10.1
二.选择题(本大题共8小题,每小题4分,共32分)
11.b 12.c 13.d 14.a 15.d 16.a 17.b 18.c 19.d 20.b
三.解答题(本大题共6小题,满分66分).
17.解:(1)3;3分)
2)甲商场抽查用户数为:500+1000+2000+1000=4500(户)
乙商场抽查用户数为:100+900+2200+1300=4500(户) -分)
所以甲商场满意度分数的平均值=≈2.78(分)--分)
乙商场满意度分数的平均值=≈3.04(分)
答:甲、乙两商场用户满意度分数的平均值分别为2.78分、3.04分7分)
3)因为乙商场用户满意度分数的平均值较高(或较满意和很满意的人数较多),所以乙商场的用户满意度较高10分)
18.解:(1)∵△abc是等边三角形,dg∥bc,△agd是等边三角形
ag=gd=ad,∠agd=60°
de=dc,∴ge=gd+de=ad+dc=ac=ab
∠agd=∠bad,ag=ad,△age≌△dab5分)
2)由(1)知ae=bd,∠abd=∠aeg---6分)
ef∥db,dg∥bc,∴四边形bfed是平行四边形7分)
ef=bd, ∴ef=ae8分)
∠dbc=∠def,∴∠abd+∠dbc=∠aeg+∠def,即∠aef=∠abc=60°(9分)
△abc是等边三角形,∠afe=6010分)
19.解:(1)设甲工厂每天加工x件,则乙工厂每天加工(x+8)件1分)
由题意得:-203分)
解之得:x1=-24, x2=16.
经检验,x1、x2均为所列方程的根,但x1=-24 不合题意,舍去.此时x +8 = 24.
答:甲工厂每天加工16件,乙工厂每天加工24件5分)
(2)由(1)可知加工960件产品,甲工厂要60天,乙工厂要40天.所以甲工厂的加工总费用为60(800 + 50)=51000(元6分)
设乙工厂**为每天m元,则乙工厂的加工总费用为40(m + 50)元 .
由题意得:40(m + 50)≤51000,解之得m≤12259分)
答: 乙工厂所报加工费每天最多为1225元时,可满足公司要求,有望加工这批产品.-(10分) 20.(1);…3分。……3分。
,乙先到b地;……4分。
3)(6分)如图。
只要两对平行线及三点共线即可得分)
九年级数学竞赛试卷
一 选择题 共5小题,每小题6分,共30分 1.使代数式y 的值为整数的全体自然数x的和是 a.5b.6c.12d.22 2.方程 x 实数根的个数为 a.1b.2c.3d.4 3.如图,正方形abcd的边ab在x轴的正半轴上,c 2,1 d 1,1 反比例函数y 的图像与边bc交于点e,与边cd交...
九年级数学竞赛试卷
2012年秋乐桥镇中九年级数学竞赛试卷。时间100分钟满分120分 一 选择题 每小题3分,共30分 1 估算的值在 a 5和6之间 b 6和7之间 c 7和8之间 d 8和9之间。2 如果,那么 a a b互为相反数 b a b互为倒数 c a b相等 d a 2b 3 关于x的方程 a 5 x ...
九年级数学竞赛试卷
2014 2015学年度第一学期九年级数学竞赛试卷。一 选择题 每题3分,共24分 1.如图1所示的图形中,既是轴对称图形又是中心对称图形的是 图12.下列成语所描述的事件是必然事件的是 a 水中捞月 b 拔苗助长 c 守株待兔 d 瓮中捉鳖。3.如图2,ab是 o的直径,acd 15 则 bad的...