2024年中考数学试题汇编-矩形。
姓名。一。选择题。
1.(2024年潍坊)如图1,矩形的周长为,两条对角线相交于点,过点作的垂线,分别交于点,连结,则的周长为( )
a.5cmb.8cmc.9cmd.10cm
图1图2图3
2.(2024年乐山)如图2,把矩形纸条沿同时折叠,两点恰好落在边的点处,若,,,则矩形的边长为( )
3.(2024年江西省)如图,将矩形纸片沿对角线折叠,使点落在处,交于,若,则在不添加任何辅助线的情况下,图中的角(虚线也视为角的边)有( )
a.6个b.5个c.4个d.3个。
4. (2024年哈尔滨市)如图4,矩形纸片中,,把矩形纸片沿直线折叠,点落在点处,交于点,若,则的长为( )
abcd.
图4图5图6
5. (2024年东营)如图5,四边形abcd为矩形纸片.把纸片abcd折叠,使点b恰好落在cd边的中点e处,折痕为af.若cd=6,则af等于 (
abcd.8
6.(2024年临沂)如图6,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长应分别为( )
a. b. c. d.
7.(2024年绵阳)当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图7,已知矩形abcd,我们按如下步骤操作可以得到一个特定的角:
(1)以点a所在直线为折痕,折叠纸片,使点b落在ad上,折痕与bc交于e;(2)将纸片展平后,再一次折叠纸片,以e所在直线为折痕,使点a落在bc上,折痕ef交ad于f.则∠afe =(
a.60b.67.5c.72d.75图7图8
8.(2024年株洲)如图8,矩形abcd中,ab=3,ad=4,动点p沿a→b→c→d的路线由a点运动到d点,则△apd的面积s是动点p运动的路径x的函数,这个函数的大致图象可能是( )
9. (2024年资阳)如图9,在△abc中,已知∠c=90°,ac=60 cm,ab=100 cm,a、b、c…是在△abc内部的矩形,它们的一个顶点在ab上,一组对边分别在ac上或与ac平行,另一组对边分别在bc上或与bc平行。 若各矩形在ac上的边长相等,矩形a的一边长是72 cm,则这样的矩形a、b、c…的个数是( )
a. 6b. 7c. 8d. 9
二。填空题。
1.(2024年梧州)如图10,在矩形abcd中,对角线ac、bd相交于o,ab=oa=3,则bc
2. (2024年莆田)如图11,将一长方形的纸片按如图方式折叠,为折痕,则度.
图10图11图12
3.(2024年成都)如图12,把一张矩形纸片沿折叠后,点分别落在的位置上,交于点.已知,那么。
4. (2024年临汾)如图13,将矩形纸片的一角沿ef折叠,使点落在矩形的内部处,若,则度.
图13图14图15
5. (2007甘肃陇南)如图14,矩形的对角线和相交于点,过点的直线分别交和于点e、f,,则图中阴影部分的面积为 .
6.(2024年西宁)如图15,让两个长为12,宽为8的矩形重叠,已知ab长为7,则两个矩形重叠的阴影部分面积为。
7.(2024年浙江绍兴)如图16,矩形abcd的边ab在x轴上,ab的中点与原点重合,ab=2,ad=1,过定点q(0,2)和动点p(a,0) 的直线与矩形abcd的边有公共点,则a的取值范围是。
图16图17
8. (2024年重庆)已知,如图17:在平面直角坐标系中,o为坐标原点,四边形oabc是矩形,点a、c的坐标分别为a(10,0)、c(0,4),点d是oa的中点,点p在bc边上运动,当△odp是腰长为5的等腰三角形时,点p的坐标为。
9.(2024年天津)已知矩形abcd,分别为ad和cd为一边向矩形外作正三角形ade和正三角形cdf,连接be和bf,则的值等于 。
三。解答题。
1.(2024年济南)已知:如图,在矩形中,.求证:;
2.(2024年广东中山)如图,在直角坐标系中,已知矩形的两个顶点坐标,,对角线所在直线为,求直线对应的函数解析式.
3.(2024年辽宁) 如图,已知矩形abcd中,e是ad上的一点,f是ab上的一点, ef⊥ec, 且ef=ec,de=4㎝,矩形abcd的周长为32㎝,求ae的长。
4.(2024年浙江丽水)如图,矩形中,与交于点,⊥,垂足分别为,. 求证:.
5.(2024年淮安)如图,在矩形abcd中,ae平分∠dab交dc于点e,连接be,过e作ef⊥be交ad于e。
1)求证:∠def=∠cbe;
2)请找出图中与eb相等的线段(不另添加辅助线和字母),并说明理由。
6.(2024年荆州)如图,矩形abcd中,dp平分∠adc交bc于p点,将一个直角三角形的直角顶点放在p点处,并使它的一条直角边过a点,另一条直角边交cd于e点,写出图中与pa相等的线段,并说明理由.
7.(2024年济宁)如图,先把一矩形abcd纸片对折,设折痕为mn,再把b点叠在折痕线上,得到△abe。过b点折纸片使d点叠在直线ad上,得折痕pq。
1)求证:△pbe∽△qab;
2)你认为△pbe和△bae相似吗?如果相似给出证明,如补相似请说明理由;
3)如果直线eb折叠纸片,点a是否能叠在直线ec上?为什么?
8.(2024年日照)如图,直线ef将矩形纸片abcd分成面积相等的两部分,e、f分别与bc交于点e,与ad交于点f(e,f不与顶点重合),设ab=a,ad=b,be=x.
ⅰ)求证:af=ec;
ⅱ)用剪刀将纸片沿直线ef剪开后,再将纸片abef沿ab对称翻折,然后平移拼接在梯形ecdf的下方,使一底边重合,直腰落在边dc的延长线上,拼接后,下方的梯形记作ee′b′c.
(1)求出直线ee′分别经过原矩形的顶点a和顶点d时,所对应的 x︰b的值;
(2)在直线ee′经过原矩形的一个顶点的情形下,连接be′,直线be′与ef是否平行?你若认为平行,请给予证明;你若认为不平行,请你说明当a与b满足什么关系时,它们垂直?
9.(2024年嘉兴市)现有一张矩形纸片abcd(如图),其中ab=4cm,bc=6cm,点e是bc的中点.实施操作:将纸片沿直线ae折叠,使点b落在梯形aecd内,记为点b.
1)请用尺规,在图中作出△aeb(保留作图痕迹);
2)试求b、c两点之间的距离.
10.(2024年吉林) 如图,abcd是矩形纸片,翻折∠b、∠d,使bc、ad恰好落在ac上.设f、h分别是b、d落在ac上的两点,e、g分别是折痕ce、ag与ab、cd的交点.
1)求证:四边形aecg是平行四边形;
2)若ab=4cm,bc=3cm,求线段ef的长.
11.(2007福建晋江)如图,四边形abcd为矩形,ab=4,ad=3,动点m、n分别从d、b同时出发,以1个单位/秒的速度运动,点m沿da向终点a运动,点n沿bc向终点c运动。过点n作np⊥bc,交ac于点p,连结mp。
已知动点运动了秒。
请直接写出pn的长;(用含的代数式表示)
若0秒≤≤1秒,试求△mpa的面积s与时间秒的函数关系式,利用函数图象,求s的最大值。
若0秒≤≤3秒,△mpa能否为一个等腰三角形?若能,试求出所有的对应值;若不能,试说明理由。
补:(2024年乐山) 如图,在矩形中,,.直角尺的直角顶点在上滑动时(点与不重合),一直角边经过点,另一直角边交于点.我们知道,结论“”成立.
1)当时,求的长;
2)是否存在这样的点,使的周长等于周长的倍?若存在,求出的长;若不存在,请说明理由.
我选做的是。
2024年中考数学试题
一 选择题 本大题共12小题,每小题 分,满分36分 1 6的绝对值是 b a 6b 6cd 2 以下多边形中,既是轴对称图形又是中心对称图形的是 b a 正五边形b 矩形c 等边三角形d 平行四边形。3 下列计算正确的是 d ab c a2 3 a6d a6 a2 2a4 4 观察右图,在下列四种...
2024年中考数学试题
一。选择题。1.同位素的半衰期 half life 表示衰变一半样品所需的时间 镭 226的半衰期约为1600年,1600用科学记数法表示为 a 1.6 103 b 0.16 104 c 16 102 d 160 10 2.若点p a,b 在第四象限,则点q 在 a 第一象限 b 第二象限 c 第三...
2024年中考数学试题
2013年耿马一中初中教师培训数学试题。姓名满分 100分考试时间 120分钟 一 选择题 共8小题,每小题3分,满分24分。1 据 2012年三明市国民经济和社会发展统计公报 数据显示,截止2012年末三明市常住人口约为2 510 000人,2 510 000用科学记数法表示为 a b c2 分式...