八年级数学《一次函数》培优训练题 六

发布 2023-01-09 05:57:28 阅读 7266

八年级数学《一次函数》培优训练题。

1、在直角坐标系中,有以a(-1,-1),b(1,-1),c(1,1),d(-1,1)为顶点的正方形,设正方形在直线y=x上方及直线y=-x+2a上方部分的面积为s.(1)求a=时,s的值.(2)当a在实数范围内变化时,求s关于a的函数关系式.

2、直线pa是一次函数y=x+n(n>0)的图象,直线pb是一次函数y=-2x+m(m>n)的图象,pa与y轴交于q点(如图所示),若四边形pqob的面积是,ab=2.(1)用m或n表示a、b、q、三点的坐标;(2)求a、b两点的坐标;(3)求直线pa与pb的解析式.

3、据某气象中心观察和**:发生于m地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示.过线段oc上一点t(t,0)作横轴的垂线l,梯形oabc在直线l左侧部分的面积即为th内沙尘暴所经过的路程s(km).

1)当t=4时,求s的值;

2)将s随t变化的规律用数学关系式表示出来;

3)若n城位于m地正南方向,且距m地650km,试判断这场沙尘暴是否会侵袭到n城?如果会,在沙尘暴发生后多长时间它将侵袭到n城?如果不会,请说明理由.

4、如图,直线l1:y=kx+b平行于直线y=x-1,且与直线l2:y=mx+相交于点p(-1,0).

1)求直线l1、l2的解析式;(2)直线l1与y轴交于点a.一动点c从点a出发,先沿平行于x轴的方向运动,到达直线l2上的点b1处后,改为垂直于x轴的方向运动,到达直线l1上的点a1处后,再沿平行于x轴的方向运动,到达直线l2上的点b2处后,又改为垂直于x轴的方向运动,到达直线l1上的点a2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点c依次经过点b1,a1,b2,a2,b3,a3,…,bn,an,…①求点b1,b2,a1,a2的坐标;②请你通过归纳得出点an、bn的坐标;并求当动点c到达an处时,运动的总路径的长?

5、根据国家***实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2023年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:

2023年5月份,该市居民甲用电100千瓦时,交电费60元;居民乙用电200千瓦时,交电费122.5元.该市一户居民在2023年5月以后,某月用电x千瓦时,当月交电费y元.(1)上表中,a=__b=__2)请直接写出y与x之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?

6、依法纳税是每个公民应尽的义务.从2023年3月1日起,新修改后的《中华人民共和国个人所得税法》规定,公民每月收入不超过2000元,不需交税;超过2000元的部分为全月应纳税所得额,都应纳税,且根据超过部分的多少按不同的税率纳税,详细的税率如下表:(1)某工厂一名工人2023年3月的收入为2400元,问他应交税款多少元?(2)设x表示公民每月收入(单位:

元),y表示应交税款(单位:元),当2500≤x≤4000时,请写出y关于x的函数关系式;(3)某公司一名职员2023年4月应交税款120元,问该月他的收入是多少元?

7、快车甲和慢车乙分别从a、b两站同时出发,相向而行.快车到达b站后,停留1小时,然后原路原速返回a站,慢车到达a站即停运休息.下图表示的是两车之问的距离y(千米)与行驶时间x(小时)的函数图象.请结合图象信息.解答下列问题:(1)直接写出快、慢两车的速度及a、b两站间的距离;(2)求快车从b返回a站时,y与x之间的函数关系式;(3)出发几小时,两车相距200千米?请直接写出答案.

8、小华观察钟面(图1),了解到钟面上的分针每小时旋转360度,时针毎小时旋转30度.他为了进一步**钟面上分针与时针的旋转规律,从下午2:00开始对钟面进行了一个小时的观察.为了**方便,他将分针与分针起始位置op(图2)的夹角记为y1,时针与op的夹角记为y2度(夹角是指不大于平角的角),旋转时间记为t分钟.观察结束后,他利用获得的数据绘制成图象(图3),并求出y1与t的函数关系式:y1= 6t (0≤t≤30

6t+360 (30<t≤60)请你完成:

1)求出图3中y2与t的函数关系式;

2)直接写出a、b两点的坐标,并解释这两点的实际意义;

3)若小华继续观察一个小时,请你在题图3中补全图象.

9、某公司有a型产品40件,b型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:

1)设分配给甲店a型产品x件,这家公司卖出这100件产品的总利润为w(元),求w关于x的函数关系式,并求出x的取值范围;

2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;

3)为了**,公司决定仅对甲店a型产品让利销售,每件让利a元,但让利后a型产品的每件利润仍高于甲店b型产品的每件利润.甲店的b型产品以及乙店的a,b型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?

10、如图1,a,b,c三个容积相同的容器之间有阀门连接,从某一时刻开始,打开a容器阀门,以4升/分的速度向b容器内注水5分钟,然后关闭,接着打开b容器阀门,以10升/分的速度向c容器内注水5分钟,然后关闭.设a,b,c三个容器内的水量分别为ya,yb,yc(单位:升),时间为t(单位:分).开始时,b容器内有水50升,yayc与t的函数图象如图2所示,请在0≤t≤10的范围内解答下列问题:

1)求t=3时,yb的值.

2)求yb与t的函数关系式,并在图2中画出其函数图象.

3)求ya:yb:yc=2:3:4时t的值.

11、如图,在平面直角坐标系中,已知点a(2,3)、b(6,3),连接ab.如果点p在直线y=x-1上,且点p到直线ab的距离小于1,那么称点p是线段ab的“临近点”.

1)判断点c(,)是否是线段ab的“临近点”,并说明理由;

2)若点q(m,n)是线段ab的“临近点”,求m的取值范围.

八年级数学一次函数检测题

一 精心选一选 本大题共12题,每小题3分,共36分 相信自己有能力选得又快又准,每道小题四个选择支中只有惟一一个是正确的,请将正确答案的代号填入下表。1 骆驼被称为 沙漠之舟 它的体温随时间的变化而变化,在这一问题中,自变量是。a.沙漠b.体温c.时间d.骆驼。2 下面两个变量是成正比例变化的是。...

八年级数学一次函数检测题

期末复习一次函数检测题2 一 精心选一选 本大题共12题,每小题3分,共36分 相信自己有能力选得又快又准,每道小题四个选择支中只有惟一一个是正确的,请将正确答案的代号填入下表。1 骆驼被称为 沙漠之舟 它的体温随时间的变化而变化,在这一问题中,自变量是。a.沙漠b.体温c.时间d.骆驼。2 下面两...

八年级数学一次函数检测题

第37 38课时一次函数检测题。一 精心选一选 本大题共12题,每小题3分,共36分 相信自己有能力选得又快又准,每道小题四个选择支中只有惟一一个是正确的,请将正确答案的代号填入下表。1 骆驼被称为 沙漠之舟 它的体温随时间的变化而变化,在这一问题中,自变量是。a.沙漠b.体温c.时间d.骆驼。2 ...