[教学目标]:
知识目标:能理解分三种情况证明圆周角定理的过程,向学生渗透化归思想。
能力目标:使学生进一步体验通过观察可以发现数学问题,并通过猜想、类比、归纳可以解决问题,渗透分类转化思想。
情感目标:注重激发学生的积极性,使他们勇于自主探索,乐于与人合作交流,体验探索的快乐和数学思维的美感,提高思维的品质。
[教学过程]:
一、以旧引新,看谁连的快。
屏显三个与圆有关的几何图形:
(1) 顶点在圆上,两边都和圆相交的角。
(2) 顶点在圆心的角。
(3)圆上两点间的部分。要求学生将他们和相对应的概念进行连线。
二、 动手游戏,看谁找得多。
屏显游戏规则:
1、拿出准备好的纸板,在圆上固定四个点a、b、c、d。
2、用橡皮筋两两连接a、b、c、d四个点。
3、在连结的图形中一共有多少个圆周角?
4、比一比看哪个小组连得快,连得多,请各小组作好记录。
5、完成后进行展示,持不同意见的小组可随时补充。
(学生分小组合作完成,教师参与小组活动,给予指导,学生展示找出的圆周角。)
三、 提出问题,引入新课:
问题1:这四大类12个圆周角中,弧所对的圆周角有多少个?
问题2:弧adc所对的圆周角又有几个?分别是什么?
问题3:为什么弧所对的圆周角有两个?而弧adc所对的圆周角却只有一个?
学生活动:学生进行小组讨论、交流。
教师活动:巡视、点拨、评价、板书。
[板书]:性质1:一条弧所对的圆周角有无数个,而每个圆周角所对的弧是唯一确定的。
四、 动手实验,看谁猜得对。
1、问题启示:圆周角和圆心角是不同的角,并且有不同的性质,但只要它们对着同一条弧,彼此之间就有着一定的关系。究竟两者之间存在着什么关系呢?下面请看图形(电脑展示)
学生活动:小组实验,在白纸上任意画一个圆,呼出同弧所对的一个圆心角和一个圆周角。利用量角器量圆周角和圆心角的度数,并填写实验报告。
教师活动:巡视、点拨、鼓励学生大胆猜想,激发学生的探索精神。
(师生互动,每组派一名代表上台展示实验结果,教师用几何画板软件动态测量出∠aob和∠acb的度数,进一步验证学生的猜想。
五、 细心观察,初步探索:
师利用几何画板的拖动功能和折纸的方法,直观形象地演示圆心角和圆周角的位置关系,让系饿感受圆心角和圆周角有且只有三种位置关系:圆心在圆周角的一条边上;圆心在圆周角的内部;圆心在圆周角的外部。
电脑演示:固定圆周角的一边,使另一边绕着圆周角的顶点运动,同时将学生画的不同情况的图形进行展示。引导学生进一步类比、归纳,逐步渗透分类转化的思想,为后面分三种情况证明打好基础。
(通过这种形象直观的教学,使学生从运动的观点理解知识,通过观察,在探索图形变换活动中,发展几何直觉,为分情况说理奠定基础。)
六、 合作探索,突破难点。
这是本节课大段时间的学生活动,在这个过程中引导学生达到以下目标:
1、尝试从不同角度寻求解决方法,提高解决问题能力。
2、鼓励学生在小组内敢于表达自己的想法和观点。
3、尊重学生在解决问题过程中表现出来的水平差异。
4、教师不断加入学生中间,成为他们学习的合作者,让学生感到师生共同探索的快乐。
七、 证明猜想,得出结论。
引导学生证明猜想,逐步渗透由特殊到一般,分类讨论等数学思想,充分展示学生的证明过程。
[师板书]:性质2:圆周角等于它所对的弧所对的圆心角的一半。
八、进一步探索,完善结论。
性质3:同弧或等弧所对的圆心角相等。
九、巩固定理,初步应用。
[电脑展示]:例如:oa、ob、oc都是⊙o的半径,∠aob=∠boc,求证:∠acb≌2∠bca (图形略)
证明:∵∠acb=1∕2∠aob,∠bac=1/2∠boc
∠aob=1/2∠boc ∴∠acb=2∠bac
(使学生在从复杂的图形中分解出基本图形的训练中,培养空间识图能力。)
十、引导小结,进行反思。
引导学生谈一谈本节课自己的学习体会。
十。一、设计作业。
要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:
“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。
只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。 1、书面作业:
课本第165页练习第2题,第166页习题24.1复习巩固题。
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
2、**作业:课后同学互助总结圆心角与圆周角的区别和联系(列表或语言叙述)。
九年级数学圆周角
计算题。6 如图,ad是 abc外接圆的直径,ad 6cm,dac abc 求ac的长 7 已知 dbc和等边 abc都内接于 o,bc a,bcd 75 如图 求bd的长 8 如图,半圆的直径ab 13cm,c是半圆上一点,cd ab于d,并且cd 6cm 求ad的长 9 如图,圆内接 abc的外...
九年级数学圆周角 2
铁门二中九年级数学导学案。课题 圆周角 2课型 新授课 主备人 赵松丽审核 九年级数学组。学习目标。1.掌握圆内接四边形的性质定理及其证明 2.能用定理解决相关的几何问题。学习重点 掌握圆内接四边形的性质定理及其证明 学习难点 能用定理解决相关的几何问题。学习过程。一 自主预习。1.如果一个四边形的...
九年级数学《4 3圆周角》学案 1 教学设计
学习目标 1.掌握圆周角定义,并会熟练运用定义进行判断 2.理解半圆 或直径 与圆周角的关系 并会熟练运用关系解决问题。学习过程 一 知识回顾 1 请说出圆心角的定义。2 如图,已知o为圆心,aob 80 求ab弧的度数 延长ao交 o于点c,连结cb,求。c的度数。aob与 c具有怎样的大小关系?...