立体几何命题的判断与构造立体几何大题

发布 2022-10-11 05:08:28 阅读 8090

[立体几何命题的判断与构造]立体几何大题。

立体几何的习题中判断直线和平面的位置关系的命题比较多。本文通过一些实例,给出类似命题的常用判断方法:直接法、模拟法、否定检验法,也给出一些常见构造命题的方法,希望能探索一些命题之间的关联。

一、命题的常用判断方法。

1.直接法。

若对定义、公理、定理等掌握灵活,可直接判断,称为“直接法”。

例1.垂直于同一平面的两直线平行。用符号表示即:m⊥α,n⊥α?圯m∥n

显然,这个命题是正确的,即直线与平面垂直的性质定理。

例2.垂直于同一直线的两平面平行。用符号表示即:m⊥α,m⊥β?圯α∥β

这个命题也是正确的。

例3.如一条直线平行于一个平面,则该直线平行于该平面内的任何直线。用符号表示即:a∥α,b∈α?圯a∥b

这个命题是假命题。只要对直线和平面平行的性质定理掌。

第1页。共5页。

握的准确就可正确判断。另外也可通过实物演示,如图:

2.模拟法。

模拟法就是结合实物加以模拟演示。

例4.垂直于同一平面的两平面平行(假命题)

可用墙角来模拟说明。

3.否定检验法。

有一些命题,看起来是真命题,并且通过实验演示也容易演示错误。

例5.如果两条直线和一个平面所成的角相等,则两直线平行。

由于有“两条平行直线与同一个平面所成的角相等”这个正确命题作为经验,用实物演示时往往容易演示成下图,从而认为该命题为真,而事实上该命题为假命题。

判断这样的命题可用以下思路:否定所给命题,再利用已知条件演示或作图,若能做出图形,则所给命题为假命题。

如例5可先假定两直线不平行,再利用已知条件,及构造两条不平行的直线与一个平面所成的角相等,而两直线不平行可以却相交,可以用实物演示:

这种方法为“否定检验法”,对很多似是而非的命题判断很有效。

二、常用的构造命题法。

第2页。共5页。

通过比较我们发现很多命题都有相似处,所以可利用一些方法自己“构造”并判断命题。通常构造命题的方法有:利用四种命题的关系构造命题;利用变换“关键词”构造命题,比如在原有命题中,将关键词“点”“直线”“平面”互相转化,将“平行”“垂直”进行转化等,并且注意文字表述和符号表述。

例6.利用变换关键词的方法构造命题。

已知命题:若两条直线都和第三条直线平行,则这两条直线平行。

符号表示即:a∥b,c∥b?圯a∥c(真)

若两条直线都和第三条直线垂直,则这两条直线平行。

符号表示即:a⊥b,c⊥b?圯a∥c(假)

若两个平面都和一条直线平行,则这两个平面平行。(已知命题中的直线变平面)

符号表示即:α∥a,β∥a?圯α∥β假)

若两个平面都和第三个平面平行,则这两个平面平行。(已知命题中的直线变平面)

符号表示即:α∥圯α∥β真)

若两条直线都和一个平面平行,则这两条直线平行。(已知命题中的直线变平面)

符号表示即:a∥α,b∥α?圯a∥b(假)

第3页。共5页。

若两条直线都和一个平面垂直,则这两条直线平行。(已知命题中的平行变垂直)

符号表示即:a⊥α,b⊥α?圯a∥b(真)

若两个平面都和一个平面垂直,则这两个平面平行。符号表示即α⊥γ圯α∥β假)

若两个平面都和一条直线垂直,则这两个平面平行。(已知命题中的平面变直线)

符号表示即:m⊥α,m⊥β?圯α∥β真)

例7.利用四种命题的关系构造命题。

原命题:如果两条直线平行,则它们和第三条直线所成的角相等(真)

逆命题:如果两条直线和第三条直线所成的角相等,则两直线平行(假)

否命题:如果两条直线不平行,则它们和第三条直线所成的角不相等(假)

逆否命题:如果两条直线和第三条直线所成的角不相等,则两直线不平行(真)

教师自己“构造”立体几何命题,并鼓励学生“构造”并判断新命题,既可加强对立体几何知识和方法的理解,也可促进学习兴趣,增强学习立体几何的信心,对数学思想方法的掌握和学习成绩的提高都很有好处。

第4页。共5页。

第5页。共页。

责编张景贤】

立体几何判断题汇总

立体几何基本概念题汇总。一 判断题。1 有两个面是平行且相似矩形,其它各面都是等腰梯形的多面体是棱台。2 正棱台上下底面中心的连线是棱台的高。3 棱台中截面的面积等于它上 下底面面积和的一半。4 过正棱台上 下底面中心的截面是直角梯形。5 用一个平面去截棱锥,底面与截面之间的部分叫棱台。6 两个底面...

立体几何判断题大全

高考 立体几何 判断命题题型集锦。2008年高考。1 安徽文理 已知是两条不同直线,是三个不同平面,下列命题中正确的是 a b cd 2 宁夏文 已知平面平面,点,直线,直线,直线,则下列四种位置关系中,不一定成立的是 ab cd 3 湖南文 已知直线m,n和平面满足,则 或或。4 湖南理 设有直线...

向量与立体几何

天河中学邵晓叶。一 基本方法 1 利用向量证明平行。1 线线平行 面面平行 方法 2 线面平行方法 利用共面向量定理,如果两个向量 不共线,则向量与向量 共面的充要条件是存在实数对x,y,使 x y 2 利用向量求距离。1 点到平面的距离。方法1 直接作出距离,然后用向量进行计算 方法2 已知为平面...