1、下列函数中,反比例函数是( )
a) (b) (c) (d)
2、若m(,)n(,)p(,)三点都在函数(k>0)的图象上,则、、的大小关系是( )
a) (b) (c) (d)
3、如图,a为反比例函数图象上一点,ab垂直轴于b点,若=5,则的值为( )
a) 10 (b) (c) (d)
4、已知函数,,它们的共同点是:(1)在每一个象限内,函数y都随x的增大而增大;(2)都有部分图象在第一象限;(3)都经过点(1,4);其中错误的有( )
a、0个; b、1个; c、2个; d、3个;
6、在同一直角坐标平面内,如果直线与双曲线没有交点,那么和的关系一定是。
a)、异号 (b)、同号 (c) >0, <0 (d) <0, >0
7、如果反比例函数的图像经过点(-3,-4),那么函数的图像应在( )
a、第。一、三象限 b、 第。
一、二象限 c、 第。
二、四象限 d、 第。
三、四象限。
8、若反比例函数的图像在第。
二、四象限,则的值是( )
a、-1或1 b、小于的任意实数 c、-1 d、不能确定。
9、正比例函数(k>0)和反比例函数(k>0)在同一坐标系内的图象为( )
abcd10、如图,a为反比例函数图象上一点,ab垂直轴于b点,若s△aob=3,则的值为( )
a、6 b、3 c、 d、不能确定
11、已知反比例函数的图像上有两点a(,)b(,)且,则的值是( )a、 正数 b、 负数 c、 非正数 d、 不能确定。
12、如图,两个反比例函数c1:y= 和c2:y= 在第一象限内的图象如图,p在c1上作pc、pd垂直于坐标轴,垂线与c2交点为a、b,则下列结论,其中正确的是( )
△odb与△oca的面积相等
四边形paob的面积等于k1- k2
pa与pb始终相等
当点a是pc的中点时,点b一定是pd的中点。
abcd、①③
13、在反比例函数的图象上有两点和,若时,,则的取值范围是 .
14、函数的图像,在每一个象限内,随的增大而 ;
15、是关于的反比例函数,且图象在第。
二、四象限,则的值为。
16、正比例函数y=x与反比例函数y=的图象相交于a、c两点,ab⊥x轴于b,cd⊥x轴于d,如图所示,则四边形abcd的面积为___
17、已知反比例函数若函数的图象位于第一三象限,则k
若在每一象限内,y随x增大而增大,则k
18、考察函数的图象,当x=-2时,y= _当x<-2时,y的取值范围。
是 __当y﹥-1时,x的取值范围是。
19、若点(-2,y1)、(1,y2)、(2,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是。
20、反比例函数的图象经过点(2,5),若点(1,n)在反比例函数图象上,则n等于 。
21、在反比例函数的图象上有三点(x1,y1)、(x2,y2)、(x3,y3),若x1>x2>0>x3,则y1,y2,y3的大小关系是。
22、如图,点p是反比例函数图象上的一点,过点p分别向x轴、y轴作垂线,若阴影部分面积为3,则这个反比例函数的关系式是。
23、已知,关于x的一次函数和反比例函数的图象都经过点(1,-2),求这两个函数的解析式。
24、如图所示,已知直线y1=x+m与x轴、y轴分别交于点a、b,与双曲线y2=(k<0)分别交于点c、d,且c点坐标为(-1,2).
1)分别求直线ab与双曲线的解析式;
2)求出点d的坐标;
3)利用图象直接写出当x在什么范围内取何值时,y1>y2.
25、如图,已知反比例函数的图象与一次函数y= kx+4的图象。
相交于p、q两点,且p点的纵坐标是6。
1)求这个一次函数的解析式(2)求三角形poq的面积。
26、如图,rt△abo的顶点a是双曲线y=与直线y=-x-(k+1)在第二象限。
的交点。ab⊥x轴于b,且s△abo=.
1)求这两个函数的解析式;
2)求直线与双曲线的两个交点a、c的坐标和△aoc的面积。
27、如图,已知一次函数y=kx+b的图象与反比例函数y=-的图象交于a、b两点,且点a的横坐标和点b的纵坐标都是-2.
求:(1)一次函数的解析式;(2)△aob的面积.(3)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.
2、如图,a、b是y=上的点,△aoc、△bcd都是等腰直角三角形,∠a=∠b=90°,点d坐标。
3、如图,坐标系中有△abc,a(1,4),b(3,1),c(4,2),有一双曲线y= 与该三角形无交点,则可知k的取值范围是。
4、如图,函数y= 和y= 在第一象限的图像,点p1,p2,p3,……p2011都是曲线上的点,它们的横坐标分别为x1,x2,x3,……x2011,纵坐标分别为1,3,5,7……,是连续的2011个奇数,过各个p点作y的平行线,与另一双曲线交点分别是q1(x1,y1),q2(x2,y2),q3(x3,y3),…q2012(x2012,y2012),则y2012
5、如图,在双曲线y= 的一支上有点a1、a2、a3、……正好构成图中多个正方形,点a2的坐标为。
6、如图,图中的多个正三角形的顶点均在双曲线y= 上,则点b3的坐标为点b2011的坐标为。
7、如图,双曲线y= 的一支与直线y= m x 交点a,延长oa到b,使2ab=oa,过a、b分别向x轴作垂线,垂足为c、d,bd与双曲线交点e,若△obe面积为5,则双曲线解析式为。
8、我们把纵、横坐标值均为整数的点叫“整点”,如点(1,2)、(5,4)、(0,-3)这样的点都是整点,已知某双曲线y= (x>0,k>0) 的图像上总共有5个“整点”,且点a(t,t)是其中一点,则k
3、(8分)如图,a、b分别是x轴、y轴上的点,某双曲线的一支与矩形aobc的对角线co的交点为d,若沿着图中的虚线oe对折,则b点正好与d点会重合,已知c(- 4,3),求该双曲线的解析式。
4、(10分)如图,p是双曲线y= 在第一象限上一点,作pc⊥y轴,pd⊥x轴,与直线ab:y= x +3 交e、f(如图),求证:af×be是个定值,并求出这个定值。
反比例函数的图像及性质
第十一讲反比例函数的图像与性质。例1已知反比例函数的图象经过点a 2,6 1 这个函数的图象分布在哪些象限?y随x的增大而如何变化?2 点b 3,4 c 2,4 和d 2,5 是否在这个函数的图象上?1 反比例函数性质如下表 2.反比例函数解析式的确定 利用待定系数法 只需一对对应值或图像上一个点的...
反比例函数性质
35 浙江省金华市 已知点p的坐标为 m,0 在x轴上存在点q 不与p点重合 以pq为边作正方形pqmn,使点m落在反比例函数y 的图像上 小明对上述问题进行了 发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点m在第四象限,另一个正方形的顶点m1在第二象限 1 如图所示,若反比例函...
反比例函数的图像与性质作业
反比例函数的图像与性质 2 作业。一 复习回顾。1.反比例函数y k x k 0 的图象是一个怎样的图象?2.反比例函数的图象的位置与k有怎样关系?当时,两支曲线分别位于第象限内 当时,两支曲线分别位于第象限内。3 反比例函数的图象可能与x轴相交吗?可能与y轴相交吗?为什么?结论 图像的两个分支x轴...