新人教版九年级数学 下二次函数 六二次函数与实际问题

发布 2022-08-17 15:07:28 阅读 4757

要点一:二次函数的三种基本表达式的各自特征?在确定解析式时应如何选取?

要点二:如何判断二次函数与x轴的交点情况,怎样求二次函数与x轴的交点坐标?

要点。三、如何求一次函数与二次函数交点坐标?

一、知识回顾。

1. 二次函数y=2(x-3) 2+5的对称轴是顶点坐标是当x= 时,y的最值是 。

2. 二次函数y=-3(x+4) 2-1的对称轴是顶点坐标是当x= 时,函数有最值,是。

二、例题**。

例题1.某化工材料经销公司购进了一种化工原料共7000千克,购进**为每千克30元。物价部门规定其销售单价不得高于每千克70元,也不得低于30元。市场调查发现:

单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算)。设销售单价为x元,日均获利为y元。

1)求y关于x的二次函数关系式,并注明x的取值范围;

2)将(1)中所求出的二次函数配方成顶点式的形式,写出顶点坐标;指出单价定为多少元时日均获利最多,是多少?

例题2.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:

如果调整**,每涨价1元,每星期要少卖出10件。要想每周获得6090元的利润,该商品定价应为多少元?

变式训练】1、已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整**,每涨价1元,每星期要少卖出10件;如何定价才能使利润最大?

2、某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件。根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件。售价提高多少元时,才能在半个月内获得最大利润?

例题3、某公司生产的某种产品,它的成本是2元,售价是3元,年销售量为100万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:

1)求y与x的函数关系式;

2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润s(十万元)与广告费x(十万元)的函数关系式;

3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?

变式训练】1、行驶中的汽车在刹车后由于惯性的作用,还要继续向前滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号汽车的刹车性能﹙车速不超过140千米/时﹚,对这种汽车进行测试,数据如下表:

1﹚以车速为x轴,以刹车距离为y轴,在坐标系中描出这些数据所表示的点,并用平滑的曲线连结这些点,得到函数的大致图象;

2﹚观察图象,估计函数的类型,并确定一个满足这些数据的函数关系式;

3﹚该型号汽车在国道上发生一次交通事故,现场测得刹车距离为46.5米,请推测刹车时的车速是多少?请问在事故发生时,汽车是超速行驶还是正常行驶?

重点点拨:求几何图形的面积最值问题关键:

选择适当的未知量设未知数;

根据相应几何图形面积公式建立未知数方程;

求方程在未知数取值范围内的最值。

例题1、用总长为60m的篱笆围成矩形场地,矩形面积s随矩形一边长l的变化而变化,当l是多少时,场地的面积s最大?

例题2、一块三角形废料如图所示,∠a=30°,∠c=90°,ab=12.用这块废料剪出一个长方形cdef,其中,点d、e、f分别在ac、ab、bc上.要使剪出的长方形cdef面积最大,点e应造在何处?

例题3、如图,点e、f、g、h分别位于正方形abcd的四条边上,四边形efgh也是正方形.当点e位于何处时,正方形efgh的面积最小?

例题4、如图,在△abc中∠b=90°ab=22cm,bc=20cm,动点p从点a开始沿边ab向b以的速度移动,动点q从点b开始沿边bc向c以的速度移动。如果p、q分别从a、b同时出发。

(1)求四边形apqc的面积y(cm2)与p、o的运动时间x(s)的函数关系式及这个函数自变量x的取值范围。

(2)求四边形apqc的面积的最小值,并求出此时的值。

变式训练】1.已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?

2.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式是h=30t-5t2.小球运动的时间是多少时,小球最高?

小球运动中的最大高度是多少?

3.如图,四边形的两条对角线ac、bd互相垂直,ac+bd=10,当ac、bd的长是多少时,四边形abcd的面积最大?

例题1.如图,一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05m.

1)建立如图所示的直角坐标系,求抛物线的函数关系式;

2)该运动员身高1.8m,在这次跳投中,球在头顶上方0.25m处出手,问:球出手时,他跳离地面的高度是多少?

例题2、某市人民广场上要建造一个圆形的喷水池,并在水池**垂直安装一个柱子op,柱子顶端p处装上喷头,由p处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示)。若已知op=3米,喷出的水流的最高点a距水平面的高度是4米,离柱子op的距离为1米。

1)求这条抛物线的解析式;

2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外。

例题3、有一抛物线拱桥,已知水位线在ab位置时,水面的宽为4米,水位上升4米,就达到警戒线cd,这时水面宽为4米.若洪水到来时,水位以每小时0.5米的速度上升,则水过警戒线后几小时淹没到拱桥顶端m处?

1、一场篮球赛中,小明跳起投篮,已知球出手时离地面高米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。

问此球能否投中?

在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球投入篮圈?

2、某跳水运动员在进行10m跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面m,入水处距池边的距离为4m,同时运动员在距水面高度5m以前,必须完成规定的翻腾动作,并调整好入水姿势时,否则就会出现失误.

1)求这条抛物线的函数关系式;

2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为m,问此次跳水会不会失误?并通过计算说明理由.

3、某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量t(件),与每件的销售价x(元/件)可看成是一次函数关系:t=-3x+204。

1)写出商场卖这种服装每天的销售利润y与每件的销售价x之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差);

2)通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少?

4、某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500kg;销售单价每涨1元,月销售量就减少10kg.针对这种水产品的销售情况,请解答以下问题:

1)当销售单价定为每千克55元时,计算月销售量和月销售利润;

2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式;

3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?

5、某超市经销一种销售成本为每件40元的商品。据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件。设销售单价为x元(x≥50),一周的销售量为y件。

1)写出y与x的函数关系式(标明x的取值范围);

2)设一周的销售利润为s,写出s与x的函数关系式,求出s的最大值,并确定当单价在什么范围内变化时,利润随单价的增大而增大?

3)若超市对该种商品投入不超过10000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少元?

新人教版九年级数学 下 二次函数导学案 3

新人教版九年级数学 下 二次函数 导学案 3 26.1.3 二次函数的图象 一 学习目标 1 知道二次函数与的联系 2.掌握二次函数的性质,并会应用 学法指导 类比一次函数的平移和二次函数的性质学习,要构建一个知识体系。学习过程 一 知识链接 直线可以看做是由直线得到的。练 若一个一次函数的图象是由...

学年九年级数学培优练习二次函数新人教版

班级姓名。1 周长8m的铝合金制成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是 a m b m c 4m d m 2 二次函数y x bx c图象的最高点是 1,3 则b c的值是 a b 2,c 4 b b 2,c 4 c b 2,c 4 d b 2,c 4 3 小敏...

人教版九年级数学二次函数

22.1.1 二次函数 学习目标 了解二次函数的有关概念 会确定二次函数关系式中各项的系数 确定实际问题中二次函数的关系式。学习重点 二次函数的表达式。学习难点 二次函数的判断。读书思考 阅读课本第27 29页的内容,思考 1.什么是二次函数,二次函数在课本上是从形式上定义的,特别要注意二次项系数不...