九年级下 二次函数 5

发布 2022-08-17 14:56:28 阅读 5566

26.1 二次函数(5)

主备人:王寿军参与人:马晓瑞上课时间:2013-12-09

教学目标:

1.使学生理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系。

2.会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标。

3.让学生经历函数y=a(x-h)2+k性质的探索过程,理解函数y=a(x-h)2+k的性质。

重点难点:重点:确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a(x-h)2+k的性质是教学的重点。

难点:正确理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质是教学的难点。

教学过程:一、提出问题。

1.函数y=2x2+1的图象与函数y=2x2的图象有什么关系?

(函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的)

2.函数y=2(x-1)2的图象与函数y=2x2的.图象有什么关系?

(函数y=2(x-1)2的图象可以看成是将函数y=2x2的图象向右平移1个单位得到的,见p10图26.2.3)

3.函数y=2(x-1)2+1图象与函数y=2(x-1)2图象有什么关系?函数y=2(x-1)2+1有哪些性质?

二、试一试。

你能填写下表吗?

问题2:从上表中,你能分别找到函数y=2(x-1)2+1与函数y=2(x-1)2、y=2x2图象的关系吗?

问题3:你能发现函数y=2(x-1)2+1有哪些性质?

对于问题2和问题3,教师可组织学生分组讨论,互相交流,让各组代表发言,达成共识;

函数y=2(x-1)2+1的图象可以看成是将函数y=2(x-1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的。

当x<1时,函数值y随x的增大而减小,当x>1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1。

三、做一做。

问题4:在平面直角坐标系中,你能再画出函数y=2(x-1)2-2的图象,并将它与函数y=2(x-1)2的图象作比较吗?

教学要点。1.在学生画函数图象时,教师巡视指导;

2.对“比较”两字做出解释,然后让学生进行比较。

问题5:你能说出函数y=-(x-1)2+2的图象与函数y=-x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗?

(函数y=-(x-1)2+2的图象可以看成是将函数y=-x2的图象向右平移一个单位再向上平移2个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)

四、课堂练习: p13练习。

对于练习第4题,教师必须提示:将-3x2-6x+8配方,化为练习第3题中的形式,即。

y=-3x2-6x+8 =-3(x2+2x)+8 =-3(x2+2x+1-1)+8 =-3(x+1)2+11

五、小结。1.通过本节课的学习,你学到了哪些知识?还存在什么困惑?(左加右减,上加下减)

2.谈谈你的学习体会。

六、作业:

1.巳知函数y=-x2、y=-x2-1和y=-(x+1)2-1

1)在同一直角坐标系中画出三个函数的图象;

2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;

3)试说明:分别通过怎样的平移,可以由抛物线y=-x2得到抛物线y=-x2-1和抛物线y=(x+1)2-1;

4)试讨论函数y=-(x+1)2-1的性质。

2.已知函数y=6x2、y=6(x-3)2+3和y=6(x+3)2-3。

1)在同一直角坐标系中画出三个函数的图象;

2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;

3)试说明,分别通过怎样的平移,可以由抛物线y=6x2得到抛物线y=6(x-3)2+3和抛物线y=6(x+3)2-3;

4)试讨沦函数y=6(x+3)2-3的性质;

3.不画图象,直接说出函数y=-2x2-5x+7的图象的开口方向、对称轴和顶点坐标。

4.函数y=2(x-1)2+k的图象与函数y=2x2的图象有什么关系?

九年级下二次函数 相似

九年级数学竞赛试题。班级 姓名 一 选择题 每题3分,共21分 1 一个函数的图象如图,给出以下结论 当时,函数值最大 当时,函数随的增大而减小 存在,当时,函数值为0 其中正确的结论是 abcd 2 已知二次函数 的图象如图2所示,有下列4个结论 其中正确的结论有 a 1个 b 2个 c 3个 d...

九年级二次函数

第二十六章二次函数。26.1 二次函数及其图像。26.1.1 二次函数。类型1 二次函数的概念。解题要点 1 一个二次函数必须同时满足三个条件 1 函数表达式必须是整式 2 化成一般形式后自变量的最高次数是2 3 二次项系数不等于0 2 有已知二次函数的表达式来写其对应的项时,要注意各项和各项的系数...

九年级二次函数

期中难点突破。突破一判别式 根与系数关系与几何结合。一 与勾股定理结合构建一元二次方程。1 已知关于x的一元二次方程 1 求证 无论k取什么实数值,该方程总有两个不相等的实数根 2 当rt abc的斜边,且两条直角边的长b和c恰好是这个方程的两个根时,求k的值 二 利用几何条件隐含 0 2 关于x的...