九年级数学投针实验

发布 2022-07-31 03:39:28 阅读 4429

活动方式:小组合作交流,全班汇总实验数据,交流研讨.

活动工具:形状、大小完全相同的图钉.

活动步骤:1.分组:每组5人.

2.每组每人做20次实验,根据实验结果,填写下表的**:

3.根据上表你认为哪种情况的频率较大?

4.分别汇总本小组其中两人、三人、四人、五人的实验数据,相应得到实验40次、60

次、80次、100次时钉帽着地的频率,填写下表,并绘制折线统计图.

5.汇总全班各小组其一个组.两个组、三个组、四个组……的实验数据,相应得到实验100次、200次、300次、400次……时钉帽着地的频率,并绘制折线统计图.

6.由折线统计图,估计钉帽着地的概率.

(注意:①图钉必须从一定高度自由落下,保证着地时的随机性;②组内同学合作时要进行适当的分工;③体现学生的自主性,实验活动以及实验数据的汇总等都可以由学生白行组织完成;④教师认真评价学生合作交流的意识和能力,学生的思维水平,学生的动手能力等)

[师生共析]我们一同来研究一下,掷一枚图钉时,出现“钉帽着地”这一结果的概率.

将图钉掷200次,每掷20次,统计一下两个组同学“钉帽着地”这一结果出现的次数,并算出相应的频率,如下表.

将统计数据(“钉帽着地”的频率)画成折线统计图,看起来更直观.

从图中可发现,“顶帽着地”的频率开始“摆动”得很厉害,随着试验次数的增加,这个。

频率就开始比较稳定了,最后大致在56.5%左右摆动.由此我们可以估计“顶帽着地”的概率约为56.5%,即0.565.

[师]在数学的历史上,有一个较为著名的投针实验:

平面上画着一些平行线,相邻的两条平行线之间的距离为a,向此平面任投一长度为l(l 相交和不相交的可能性相同吗?你能通过列表或画树状图求出该针与平行线相交的概率吗?

[生]相交和不相交的可能性不相同,由于结果的可能性不同,因此这个事件的概率也不能列表或画树状图求出该针与平行线相交的概率.也必须用“当实验次数较大时,实验频率稳定于理论概率”来估计该针与平行线相交的概率.

[师]很好,我们还是分组活动.

活动二:平面上画着一些平行线,相邻的两条平行线之间的距离都是a,向此平面任投一长度为l(l 活动目的:利用“当实验次数较大时,实验频率稳定于理论概率”,并据此估计针与平行线相交的概率.

活动方式:小组交流,全班研讨的方法.

活动工具:每组学生要在平面上画有相同距离“的一组平行线,并且有长度都为l的针(l 活动步骤:1.分组,两人一组.

2.取一张白纸,在上面画一组平行线.它们之间的距离为2厘米,另外准备一根1厘米长的针.在纸下面垫一层柔软的东西,使针落在纸面上时不会弹跳起来.

3.每组至少完成100次实验,分别记录下其中相交和不相交的次数.

4.统计全班的实验数据,估计针与平行线相交的概率.

(在具体实验的过程中,要求每组学生都确定相同的l和a,而对于针可由教师统一准备.这样做是因为如果l和a取不同的值,实验结果是不同的.那样全班就无法统计数据.为了保证随机性。要求学生从一定的高度随意抛针.两个同学适当分工,使学生自主活动,汇总实验数据.此外,在实验过程中,有时针与线是否相交较难判断,学生可能为此发生一些争执,教师可以适当地加以指导,如建议学生忽略这次实验或者认为相交、不相交各计半次,等等.避免学生过多地停留于此)

[师]请同学们在用实验获得的数据估计针与平行线相交的概率的同时,用计算器计算实验总次数除以直线与平行线相交的次数,你会有什么惊人的发现?

(同学们计算、讨论后回答)

[生]得到的商好像是的一个近似值.而且投掷次数越多,得到的π的近似值越精确.

[师]很好!其实这件事绝非偶然.请同学们打开书阅读“读一读”——投针实验.这篇短文介绍了关于投针实验的一些历史资料,以及其概率与π之间的关系,据此获得一种估计π的值的方法.并将其引申为现在广泛使用的蒙特卡洛方法,旨在给学生一定的拓展空间,让学生体会到有些高深的数学中蕴涵的思想极其朴素,从而激发学生的数学学习兴趣.

[师]“读一读”中提到的蒙特卡罗方法是以概率和统计的理论、方法为基础的一种计算方法,它将所求解的问题与一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解,因此又称为统计模拟法或统计试验法.

蒙特卡罗是摩纳哥的一个城市,以赌博闻名于世.蒙特卡罗方法借用这一城市的名称,是为了象征性地表明该方法的概率统计特点.作为一种计算方法,蒙特卡罗方法是由。

乌拉姆(s.m.ulam.1909~1984)和冯·诺伊曼(j.vonneumann,1903~1957)在20世纪40年代为研制核**的需要而首先提出来的.在此之前,该方法的基本思想实际上已被统计学家所采用了.

[生]把总的次数(即相交的与不相交的次数之和)除以相交的次数,得到的商一定是圆周率的近似值,投掷次数越多,得到π的近似值越精确,这件事并非偶然,老师,你能告诉我们其中的道理吗?

[师]当针与直线相交时,必有其上的某1毫米处相交.而每1毫米最可能与直线相交的机会是相等的,它的次数应为全针与直线相交的最可能次数k的.如果针上某一段长n毫米,那么这一段与直线最可能相交的次数应为,即最可能的相交次数和针的长度成正比.

需要指出的是,这个最可能的相交次数只与针的长度成正比,而与针的形状无关.例如,我们将10毫米的针弯成两段,一段长x毫米,另一段长为(10-x)毫米,那么这两段的最可能与直线相交的次数分别为和。这样,全针的最可能相交次数仍为=k,即这个最可能相交次数与针的形状无关.当然,将针的形状弯成某种形状后,有时可能在针的某儿处都和直线相交,这时应把每一个交点都记作相交一次.

现在将针弯曲成一个圆形.假定这时的针的粗细仍是均匀的,且圆的直径等于20毫米,那么每投一次圆环总能和直线相交于两点(正好和两条直线相切也记作两个交点).投掷n次,相交次数为2n次.对于10毫米的针,它的最可能相交次数是k次.由于圆环的长是π·20毫米,等于针长的2π倍,所以圆环相交次数应是针的最可能的相交次数的2π倍,即2n=2π·k,由此可得π=

ⅲ.课时小结。

这节课我们学会了用实验的方法估计一些复杂随机事件发生的概率,并亲自体验到了“当实验次数较大时,实验频率稳定于理论概率,并可据此估计某一事件发生的概率”.经历实验、统计等活动过程,在活动过程中,同学们都能积极参与到数学活动中去,合作意识和思维能力及思维水平得到了不同程度的提高,认识了蒙特卡罗方法,并用它来估计π的近似值.

ⅳ.课后作业。

1.习题6.3

2.继续做投针实验,估算π的值.

ⅴ.活动与**。

随便说出3个正数,以这3个数为边长一定能围成一个三角形吗?一定能围成一个钝角三角形(其中最大边的平方大于另两边的平方和)吗?估计能围成一个钝角三角形的概率.

[过程]本题仍是利用实验的方法估计随机事件发生的概率,选择该题材的原因是其概率与π有关,并与“读一读”中内容相呼应.具体操作时,可以几个学生组成合作小组,每人写一个数在纸上,然后同时公布各自的数进行判断.

随便说出三个正数,以这三个正数为边不一定能组成一个三角形,如不能以1,3,5三个数为边长组成三角形;当然也不一定能组成一个钝角三角形;能围成一个钝角三角形的概率的估计值因人而异,因实验次数而异.事实上,不妨设所取三数为(a,b,c(0c,a2+b2 [结果]其理论概率为。

新人教版九年级数学下册同步练习29 1投影 2 含答案

29.1投影同步练习。一 填空题。1.太阳光线形成的投影是灯光形成的投影是。2.将一个三角板放在太阳光下,它所形成的投影是也可能是。3.已知两个电线杆在太阳光下形成两条不同的线段,那么这两条线段可能也可能。4.矩形在光线下的投影,可能是 或 也可能是。5.为了测量水塔的高度,我们取一竹杆,放在阳光下...

九年级数学实验调查

甘肃庆阳市镇原县开边中学景淑红。为了全面了解义务教育阶段九年级数学实验实施的状况,我对甘肃省镇原县开边中学九年级数学实验实施状况进行了跟踪调查。本次调查对象为开边中学九年级学生 九年级数学教师二个总体。样本为 开边中学九年级全体学生中随机抽取的120人,九年级数学教师6人。本次调查采用的方法主要有 ...

实验初中九年级数学作业

实验初中九年级数学作业4.8姓名家长签字。1 基础题。1.如图,op平分 aob,pa oa,pb ob,垂足分别为a,b 下列结论中不一定成立的是 a pa pb b po平分 aob c oa ob d ab垂直平分op 2.如图是5 5的正方形网络,以点d e为两个顶点作位置不同的格点三角形,...