江苏省泰州市姜堰区2016届九年级下学期第一次月考数学试卷。
一、选择题(每小题3分,共18分)
1.3的相反数是( )
a.﹣3 b.3 c.±3 d.9
2.下列计算中,正确的是( )
a.a2a3=a6 b.a6÷a3=a2 c.(﹣a2)3=﹣a6 d.
3.若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是( )
a.0 b.﹣1 c.2 d.﹣3
4.如果单项式﹣xa+1y3与是同类项,那么a、b的值分别为( )
a.a=2,b=3 b.a=1,b=2 c.a=1,b=3 d.a=2,b=2
5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过( )
a.第。一、二、四象限 b.第。
一、三、四象限。
c.第。二、三、四象限 d.第。
一、二、三象限。
6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣,有下列结论:①ab>0;②a+b+c<0;③b+2c<0;其中正确结论的个数是( )
a.0 b.1 c.2 d.3
二、填空题(每小题3分,共30分)
7.四个数﹣5,﹣0.1,,中为无理数的是 .
8.使代数式有意义的x的取值范围是 .
9.分解因式:ax2﹣9a= .
10.2023年,江苏省参加2016届中考的考生有35.4万人,则35.4万人用科学记数法表示为人.
11.为了2016届中考“跳绳”项目能得到满分,小明练习了6次跳绳,每次跳绳的个数如下(单位:个):176,183,187,179,187,188.这6次数据的中位数是 .
12.小明从家里骑自行车到学校,每小时骑15km,可早到10min;每小时骑12km,就会迟到5min.问他家到学校的路程是多少千米?设他家到学校的路程为xkm,则根据题意列出的方程是 .
13.如图,ab是⊙o的直径,∠abc=30°,oa=2,则bc长为 .
14.一个圆锥的侧面展开图是圆心角为120°、半径为15cm的扇形,则圆锥的底面半径为 cm.
15.如图,四边形abcd为菱形,已知a(﹣6,0),b(4,0),则点c的坐标为 .
16.如图,点a,b分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b (a>0,b>0).设直线ab的解析式为y=kx+m,若是整数时,k也是整数,满足条件的k值共有个.
三、解答题(本大题共102分)
17.计算。
1)(3.14﹣x)0+﹣2sin45°+(1.
2)解方程:+3=.
18.先化简,再求值:,其中x为不等式组的整数解.
19.某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.
20.如图,点e、f在bc上,be=fc,ab=dc,∠b=∠c.求证:∠a=∠d.
21.为了了解实验初中2015级学生的跳绳成绩,夏老师随机调查了该年级体育模拟考试中部分同学的跳绳成绩,并绘制成了如图所示的条形统计图和扇形统计图.请你根据图中提供的信息完成下列各题:
1)被调查同学跳绳成绩的中位数是 ,并补全上面的条形统计图;
2)如果我校初三年级共有学生1800人,估计跳绳成绩能得8分的学生约有人.
22.有a、b两个口袋,a口袋中装有两个分别标有数字2,3的小球;b口袋中装有三个分别标有数字3,4,5的小球.小明先从a口袋中随机取出﹣个小球,再从b口袋中随机取出一个小球;
1)用树状图法或列表法表示小明所取出的二个小球的和为奇数的概率.
2)若从a口袋中取出的小球记为x,从b口袋中取出的小球记为y,则点m(x,y)落在直线y=x+1上的概率.
23.如图,经过点a(﹣2,0)的一次函数y=ax+b(a≠0)与反比例函数y=(k≠0)的图象相交于p、q两点,过点p作pb⊥x轴于点b.已知tan∠pab=,点b的坐标为(4,0).
1)求反比例函数和一次函数的解析式;
2)若点q的坐标是q(m,﹣6),连接oq,求△coq的面积.
24.甲乙两车从姜堰去往扬州市,甲比乙早出发了2个小时,甲到达扬州市后停留一段时间返回,乙到达扬州市后立即返回.甲车往返的速度都为80千米/时,乙车往返的速度都为40千米/时,下图是两车距姜堰的路程s(千米)与行驶时间t(小时)之间的函数图象.请结合图象回答下列问题:
1)姜堰、扬州两地的距离是千米;甲到扬州市后, 小时乙到达扬州市;
2)求甲车返回时的路程s(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;
3)求甲车从扬州市往回返后再经过几小时两车相距30千米.
25.如图,在△abc中,点d、e分别在边bc、ac上,连接ad、de,且∠1=∠b=∠c.
1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)
答:结论一: ;
结论二: ;
结论三: .
2)若∠b=45°,bc=2,当点d在bc上运动时(点d不与b、c重合),求ce的最大值;
若△ade是等腰三角形,求此时bd的长.
注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)
26.平面直角坐标系中,抛物线y=ax2+bx+c交x轴于a,b两点(点a在点b左侧),与y轴交于点c,点a,c的坐标分别为(﹣3,0),(0,3),对称轴直线x=﹣1交x轴于点e,点d为顶点.
1)求抛物线的解析式;
2)点k是直线ac下方的抛物线上一点,且s△kac=s△dac求点k的坐标;
3)如图2若点p是线段ac上的一个动点,∠dpm=30°,dp⊥dm,则点p的线段ac上运动时,d点不变,m点随之运动,求当点p从点a运动到点c时,点m运动的路径长.
江苏省泰州市姜堰实验中学2016届九年级下学期第一次月考数学试卷。
参***与试题解析。
一、选择题(每小题3分,共18分)
1.3的相反数是( )
a.﹣3 b.3 c.±3 d.9
考点】相反数.
分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.
解答】解:3的相反数是﹣3,故选:a.
点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.
2.下列计算中,正确的是( )
a.a2a3=a6 b.a6÷a3=a2 c.(﹣a2)3=﹣a6 d.
考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.
专题】计算题.
分析】分别求出每个式子的值,a2a3=a5,a6÷a3=a3,(﹣a2)3=﹣a6,3a+a=(3+)a,再进行判断即可.
解答】解:a、a2a3=a5,故本选项错误;
b、a6÷a3=a3,故本选项错误;
c、(﹣a2)3=﹣a6,故本选项正确;
d、3a+a=(3+)a,故本选项错误;
故选c.点评】本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用,本题比较典型,但是一道比较容易出错的题目.
3.若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是( )
a.0 b.﹣1 c.2 d.﹣3
考点】根的判别式.
分析】首先根据题意求得判别式△=m2﹣4>0,然后根据△>0方程有两个不相等的实数根;求得答案.
解答】解:∵a=1,b=m,c=1,△=b2﹣4ac=m2﹣4×1×1=m2﹣4,关于x的方程x2+mx+1=0有两个不相等的实数根,m2﹣4>0,则m的值可以是:﹣3,故选:d.
点评】此题考查了一元二次方程判别式的知识.此题难度不大,解题时注意:一元二次方程根的情况与判别式△的关系:
1)△>0方程有两个不相等的实数根;
2)△=0方程有两个相等的实数根;
3)△<0方程没有实数根.
4.如果单项式﹣xa+1y3与是同类项,那么a、b的值分别为( )
a.a=2,b=3 b.a=1,b=2 c.a=1,b=3 d.a=2,b=2
考点】同类项.
分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a,b的值.
解答】解:根据题意得:,则a=1,b=3.
故选:c.点评】考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了2016届中考的常考点。
5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过( )
a.第。一、二、四象限 b.第。
一、三、四象限。
c.第。二、三、四象限 d.第。
一、二、三象限。
考点】一次函数图象与系数的关系;反比例函数图象上点的坐标特征.
分析】首先利用反比例函数图象上点的坐标特征可得k的值,再根据一次函数图象与系数的关系确定一次函数y=kx﹣k的图象所过象限.
解答】解:∵反比例函数y=的图象过点(﹣2,1),k=﹣2×1=﹣2,一次函数y=kx﹣k变为y=﹣2x+2,图象必过。
一、二、四象限,故选:a.
点评】此题主要考查了反比例函数图象上点的坐标特征,以及一次函数图象与系数的关系,关键是掌握一次函数图象与系数的关系:
k>0,b>0y=kx+b的图象在。
一、二、三象限;
k>0,b<0y=kx+b的图象在。
一、三、四象限;
k<0,b>0y=kx+b的图象在。
一、二、四象限;
k<0,b<0y=kx+b的图象在。
二、三、四象限.
6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣,有下列结论:①ab>0;②a+b+c<0;③b+2c<0;其中正确结论的个数是( )
a.0 b.1 c.2 d.3
考点】二次函数图象与系数的关系.
分析】根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴和图象确定y>0或y<0时,x的范围,确定代数式的符号.
解答】解:①∵开口向下,∴a<0,对称轴在y轴的左侧,b<0,∴①正确;
九年级 下 综合试卷
九年级 下 综合试卷。a 卷。一。选择题 以下各题都有四个选项,其中只有一个选项是正确的,请把正确的选项的代号填在括号内 1.抛物线的顶点坐标是 a 1,4b 1,4 c 1,4d 1,4 2.抛物线与x轴的交点坐标分别是 8,0 2,0 则它的对称轴是直线 a x 6 b x 5 c x 4 d ...
九年级 下 期末复习综合试卷
2013 2014第一学期九年级期末。数学测试。一 选择题。1 已知在rt abc中,c 90 a,b的对边分别是a,b,则下列关系式错误的是 2 如图,从山顶a望地面c d两点,测得它们的俯角分别为45 和30 已知cd 100米,点c在bd上,则山高ab 3 过 o内一点m的最长弦长为10cm,...
九年级下综合练习一
一 选择题。1 二次函数中,若,则它的图象一定过点 a.1,1 b.1,1 c.1,1 d.1,1 2 若二次函数的图象的顶点重合,则下列结论不正确的是 a.它们有相同的对称轴 b.它们的开口方向相反。c.方程无实根 d.二次函数的最大值为。3 如图 o上的点a b p,若 aob 则 p的度数为 ...