高二数学平面向量

发布 2022-07-10 23:17:28 阅读 1338

第二章平面向量。

第3课时。2.2.2 向量的减法运算及其几何意义。

教学目标:1. 了解相反向量的概念;

2. 掌握向量的减法,会作两个向量的减向量,并理解其几何意义;

3. 通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物之间可以相互转化的辩证思想。

教学重点:向量减法的概念和向量减法的作图法。

教学难点:减法运算时方向的确定。

学法:减法运算是加法运算的逆运算,学生在理解相反向量的基础上结合向量的加法运算掌握向量的减法运算;并利用三角形做出减向量。

教具:多**或实物投影仪,尺规。

授课类型:新授课。

教学思路:一、 复习:向量加法的法则:三角形法则与平行四边形法则。

向量加法的运算定律:

例:在四边形中, .

解:二、 提出课题:向量的减法。

1. 用“相反向量”定义向量的减法。

1) “相反向量”的定义:与a长度相同、方向相反的向量。记作 a

2) 规定:零向量的相反向量仍是零向量。(a) =a.

任一向量与它的相反向量的和是零向量。a + a) =0

如果a、b互为相反向量,则a = b, b = a, a + b = 0

(3) 向量减法的定义:向量a加上的b相反向量,叫做a与b的差。

即:a b = a + b) 求两个向量差的运算叫做向量的减法。

2用加法的逆运算定义向量的减法:

向量的减法是向量加法的逆运算:

若b + x = a,则x叫做a与b的差,记作a b

3求作差向量:已知向量a、b,求作向量。

∵(ab) +b = a + b) +b = a + 0 = a

作法:在平面内取一点o,作= a, =b

则= a b

即a b可以表示为从向量b的终点指向向量a的终点的向量。

注意:1表示a b.强调:差向量“箭头”指向被减数。

2用“相反向量”定义法作差向量,a b = a + b)

显然,此法作图较繁,但最后作图可统一。

2. **:

1) 如果从向量a的终点指向向量b的终点作向量,那么所得向量是b a.

)若a∥b, 如何作出a b ?

三、 例题:

例一、(p97 例三)已知向量a、b、c、d,求作向量ab、cd.

解:在平面上取一点o,作= a, =b, =c, =d,

作, ,则= ab, =cd

例。二、平行四边形中,a,b,用a、b表示向量、.

解:由平行四边形法则得:

= a + b, =ab

变式一:当a, b满足什么条件时,a+b与ab垂直?(|a| =b|)

变式二:当a, b满足什么条件时,|a+b| =ab|?(a, b互相垂直)

变式三:a+b与ab可能是相当向量吗?(不可能,∵ 对角线方向不同)

练习:p98

四、 小结:向量减法的定义、作图法|

五、 作业:p103第题。

六、 板书设计(略)

七、 备用习题:

1.在△abc中, =a, =b,则等于( )

为平行四边形abcd平面上的点,设=a, =b, =c, =d,则。

.如图,在四边形abcd中,根据图示填空:

a+b= ,b+c= ,c-d= ,a+b+c-d= .

、如图所示,o是四边形abcd内任一点,试根据图中给出的向量,确定a、b、c、d的方向(用箭头表示),使a+b=,c-d=,并画出b-c和a+d.

高二数学平面向量

第二章平面向量。本章内容介绍。向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具。向量概念引入后,全等和平行 平移 相似 垂直 勾股定理就可转化为向量的加 减 法 数乘向量 数量积运算,从而把图形的基本性质转化为向量的运算体系...

平面向量题型汇总

平面向量。8.已知向量则实数k等于 ab 3c 7d 2 23.已知 6,4,与的夹角为,则 2 3 24.已知 3,2 4,k 若 5 3 55,则k 9.已知平面向量,与垂直,则 a b c d 如图,在 abc中。a b c d 已知点是的重心,那么 若,则的最小值是。13.已知o a b三点...

《平面向量》基础题型

平面向量 基礎題型。1 已知 2,3 b 4,7 求在b上的投影。2 已知a b均为单位向量,它们的夹角为60 求 a 3b 的值。3 已知abcdef是正六边形,且 用 来表示,4 o是 abc所在平面上一点,且满足条件 判断点o是 abc的什么心。5 设与是不共线的非零向量,且k 与 k共线,求...