房山高级中学高二数学周练 (理科 )(2010.4.20)
一、填空题:本大题共14小题,每小题5分,共计70分。
1.已知复数,复数满足,则复数。
2.给出下列复数:
-2i其中表示实数的个数有填上序号
3.由①矩形的对角线互相平分;②平行四边形的对角线互相平分;③矩形是平行四边形;根据三段论推理出一个结论,则这个三段论中的大前提的序号是
5.七名学生站成一排,其中甲不站在两端且乙不站在中间的排法共有种。
5.用数学归纳法证明。
时,从到时左边需增乘的代数式是。
6.已知复数,且,则的最大值为。
7.关于的方程有一个根为(为虚数单位),则实数 .
8.用数学归纳法证明不等式时,第一步:不等式的左边是。
9.用反证法证明命题“若不是偶数,则都不是偶数”时,应假设为。
10.用数学归纳法证明“能被3整除”的第二步中,当时,为了使用归纳假设,应将变形为。
11.用红、黄、蓝三种颜色之一去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为”的小正方形涂相同的颜色,则符合条件的所有涂法共有种.
12.已知函数对任意都有,且,则 .
13.已知以1为首项的数列满足:则。
14.若等比数列的前项之积为,则有;类比可得到以下正确结论:若等差数列的前项之和为,则有。
15求证:(分别用分析法和综合法证明)
16.用数学归纳法证明能被13整除,其中。
17.如图所示,已知△abc是锐角三角形,直线sa⊥平面abc,ah⊥平面sbc,求证:h不可能是△sbc的垂心.
(1)设,是两个非零向量,如果,且,求向量与的夹角大小;
2)用向量方法证明:已知四面体,若,,则。
19.设数列{}的前n项和为,并且满足, (n∈n*).
1)求,,;2)猜测数列{}的通项公式,并加以证明;
3)求证:…
20.已知函数。
1)求函数的最大值;
2)若存在,使成立,求的取值范围;
3)若当时,不等式恒成立,求的取值范围。
高二数学周练理科
成都石室外语学校高二数学周练题 理 一 选择题。1 若直线的倾斜角为,则等于 a 0b 45c 90d 不存在。2.点到直线的距离 abcd.3.圆的圆心和半径分别是 a 1 b 3 c d 4.经过圆的圆心c,且与直线垂直的直线方程是 a x y 1 0 b x y 1 0 c x y 1 0 d...
高二理科数学周练
高二理科数学周练 第一周 一 选择题 每小题5分,共25分 1.设f x 是函数f x 的导函数,y f x 的图象如图所示,则y f x 的图象最有可能是 2函数f x x sinx是 a.奇函数且单调递增 b.奇函数且单调递减。c.偶函数且单调递增 d.偶函数且单调递减。3.2015 湖南高考 ...
高二数学周练理科
1 已知复数,则。2 已知的二项展开式的各项系数为32,则二项展开式中的系数为。3 将标号为有4男5女,全体排成一行,男女相间共有种。4 已知,设,则。5 将的张卡片放入个不同的信封中,若每个信封放张,其中标号为的卡片放入同一信封的概率为。6 展开式中不含项的系数的和为。7 的展开式的系数为。8 若...