九年级数学竞赛试题

发布 2021-12-31 12:30:28 阅读 9024

四校联考九年级数学竞赛试题。

2024年11月7日。

一、 填空题(每小题5分,共25分)

1、已知,,则。

2、若a2-3a+1=0,则3a3-8a2+a

3、如图,点a、c都在函数y= (x<0)的图象上,点b、d都在x轴上,且使得oab、bcd都是。

等腰直角三角形,()则点d的坐标为。

4、已知在平面直角坐标系中,o(0,0)、a(6,0), oba=60o,当oab的面积最大时,点b的坐标是。

5、如图,在abc中,ab=3,ac=2,以bc为边的bcp是等边三角形,则ap的最大值为___最小值为。

二、选择题(每小题5分,共25分)

6、已知关于x的两个方程x2+2bx+a=0与x2+ax+2b=0有且仅有一个公共根,则a2+b2最小值为( )

abcd.7、如图,在等腰rtabc中,ac=bc,以斜边ab为一边作等边abd,使点c、d在ab的同侧,再以cd为一边作等边cde,使点c、e在ad的异侧,若ae=1,则cd的长为( )

ab. cd.

8、若a, b为实数,且则(1+a+b)(1-a-b)的值为( )

a.-1 b.0c.1d.2

9、关于x ,y的方程(m-1)x2+2x-my-m+3=0的解与m的取值无关,则x+y

a.11 b.11或-1 c.8 d.-1

10、已知一个一次函数自变量x的取值范围是-3x5,对应的函数值y的取值范围为-2y10,则这个一次函数图象上的整点(横坐标、纵坐标都为整数的点)的个数有( )

a、4个 b、5个 c、9个 d、10个。

三、解答题(共50分)

11、在负实数范围内,只存在一个数是关于x的方程的解,求实数k的值。(10分)

12、如图,在直角梯形abcd中,ab=bc=4,e为bc上一点,且ead=45o,ed=3.求aed的面积。(8分)

13、边长为整数的等腰三角形一腰上的中线将其周长分为1:2的两部分,那么所有这些等腰三角形中,面积最小的三角形的面积是多少?(8分)

14、在平面直角坐标系中,边长为2的正方形oabc的两顶点a、c分别为y轴、x轴的正半轴上,点o在原点,现将正方形oabc绕o点顺时针旋转,旋转角为,当a点第一次落在直线y=x上时停止旋转,旋转过程中,ab边交直线y=x于点m,bc边交x轴于点n。

1)求边ab在旋转过程中所扫过的面积。(4分)

2)设mbn的周长为p,在旋转过程中,p值是否发生变化?请证明你的结论。(4分)

3)当旋转角为多少度时, omn的面积最小?(4分)

15、如图,在直角梯形abcd中,ad∥bc, b =90o, ad=6,bc=8,ab=3 ,点m是bc的中点。点p从点m出发沿mb以每秒1个单位长的速度向点b匀速运动,到达点b后立刻以原速度沿bm返回;点q从点m出发以每秒一个单位长的速度在射线mc上匀速运动。在点p , q的运动过程中,以pq为边作等边三角形epq,使它与梯形abcd在射线bc的同侧。

点p,q同时出发,当点p返回到点m时停止运动,点q也随之停止。设点p,q运动的时间是t秒(t >0)。

1)设pq的长为y,在点p从点m向点b运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);(5分)

2)当bp=1时,求epq与梯形abcd重叠部分的面积;(4分)

3)随着时间t的变化,线段ad会有一部分被epq覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由。

(3分)

九年级数学竞赛试题

60分钟完成,满分100分 一 选择题 每小题5分,共25分 二 填空题 每小题5分,共25分 7 若a b c为实数,且多项式6x3 ax2 bx c能被2x2 3x 2整除,则2a 2b c 8 计算。9 如右图,pa pb分别切圆于a b两点于e,apb 800,则。cod的度数为 10 三位...

九年级数学竞赛试题

连平县隆街第二中学2011 2012学年度第一学期。九年级数学基础知识竞赛试题。说明 在100分钟内完成,满分120分。班级姓名座号成绩。一 选择题 每小题3分,共15分 1 的倒数是 a 2b 2cd 2 下列各式运算正确的是 a b c d 3 下面是空心圆柱在指定方向上的视图,正确的是 abc...

九年级数学竞赛试题

答卷时间60分钟,满分100分。一 单项选择题 每小题5分,共30分 a 4 b 5 c 6 d 7 2 在 abc中,c 90o。a 15o,ab 12,则 abc的面积是 a 16 b 18 c 12 2 d 12 3 3 要使a5a 01 c 14 锐角 abc内接于 o,abc 60o。ba...