18.1 勾股定理(四)
一、教学目标。
1.会用勾股定理解决较综合的问题。
2.树立数形结合的思想。
二、重点、难点。
1.重点:勾股定理的综合应用。
2.难点:勾股定理的综合应用。
三、例题的意图分析。
例1(补充)“双垂图”是中考重要的考点,熟练掌握“双垂图”的图形结构和图形性质,通过讨论、计算等使学生能够灵活应用。目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式bc2-bd2=ac2-ad2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。
例2(补充)让学生注意所求结论的开放性,根据已知条件,作适当辅助线求出三角形中的边和角。让学生掌握解一般三角形的问题常常通过作高转化为直角三角形的问题。使学生清楚作辅助线不能破坏已知角。
例3(补充)让学生掌握不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。在转化的过程中注意条件的合理运用。让学生把前面学过的知识和新知识综合运用,提高解题的综合能力。
例4(教材p76页**3)让学生利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。
四、课堂引入。
复习勾股定理的内容。本节课**勾股定理的综合应用。
五、例习题分析。
例1(补充)1.已知:在rt△abc中,∠c=90°,cd⊥bc于d,∠a=60°,cd=,求线段ab的长。
分析:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学生对图形及性质掌握非常熟练,能够灵活应用。目前“双垂图”需要掌握的知识点有:
3个直角三角形,三个勾股定理及推导式bc2-bd2=ac2-ad2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。
要求学生能够自己画图,并正确标图。引导学生分析:欲求ab,可由ab=bd+cd,分别在两个三角形中利用勾股定理和特殊角,求出bd=3和ad=1。
或欲求ab,可由,分别在两个三角形中利用勾股定理和特殊角,求出ac=2和bc=6。
例2(补充)已知:如图,△abc中,ac=4,∠b=45°,∠a=60°,根据题设可知什么?
分析:由于本题中的△abc不是直角三角形,所以根据题设只能直接求得∠acb=75°。在学生充分思考和讨论后,发现添置ab边上的高这条辅助线,就可以求得ad,cd,bd,ab,bc及s△abc。
让学生充分讨论还可以作其它辅助线吗?为什么?
小结:可见解一般三角形的问题常常通过作高转化为直角三角形的问题。并指出如何作辅助线?
解略。例3(补充)已知:如图,∠b=∠d=90°,∠a=60°,ab=4,cd=2。求:四边形abcd的面积。
分析:如何构造直角三角形是解本题的关键,可以连结ac,或延长ab、dc交于f,或延长ad、bc交于e,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。教学中要逐层展示给学生,让学生深入体会。
解:延长ad、bc交于e。
∠a=∠60°,∠b=90°,∴e=30°。
ae=2ab=8,ce=2cd=4,be2=ae2-ab2=82-42=48,be==。
de2= ce2-cd2=42-22=12,∴de==。
s四边形abcd=s△abe-s△cde=ab·be-cd·de=
小结:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。
例4(教材p76页**3)
分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。
变式训练:在数轴上画出表示的点。
六、课堂练习。
1.△abc中,ab=ac=25cm,高ad=20cm,则bcs△abc
2.△abc中,若∠a=2∠b=3∠c,ac=cm,则∠a度,∠b度,∠c度,bcs△abc
3.△abc中,∠c=90°,ab=4,bc=,cd⊥ab于d,则accdbdads△abc
4.已知:如图,△abc中,ab=26,bc=25,ac=17,求s△abc。
七、课后练习。
1.在rt△abc中,∠c=90°,cd⊥bc于d,∠a=60°,cd=,ab= 。
2.在rt△abc中,∠c=90°,s△abc=30,c=13,且a<b,则a= ,b= 。
3.已知:如图,在△abc中,∠b=30°,∠c=45°,ac=,求(1)ab的长;(2)s△abc。
4.在数轴上画出表示-的点。
课堂练习:1.30cm,300cm2;
4.作bd⊥ac于d,设ad=x,则cd=17-x,252-x2=262-(17-x)2,x=7,bd=24,s△abc=ac·bd=254;课后练习:
3.提示:作ad⊥bc于d,ad=cd=2,ab=4,bd=,bc=2+,s△abc= =2+;
4.略。
八年级数学勾股定理
勾股定理。知识与基础。1.分别以下列四组为一个三角形的三边的长 其中能构成直角三角形的有 a.4组b.3组c.2组d.1组。2.等腰三角形底边上高是8,周长为32,则这个等腰三角形的面积为 a.56b.48c.40d.30 3.要从电杆离地面5m处向地面拉一条长为13m的电缆,则地面电缆固定点与电线...
八年级数学勾股定理
1 如果直角三角形两直角边分别为a,b,斜边为c,那么它们的关系是即直角三角形两直角边的。2 在rt abc中,c 90 若a 5,b 12,则c 3 如图,在下列横线上填上适当的值 4 在rt abc中,c 90 若,c 10,则a b 5 已知,甲 乙从同一地点出发,甲往东走了90m,乙往南走了...
八年级数学 勾股定理
奥数就在你身边第六讲勾股定理。考察 勾股定理。例1 已知一直角三角形的斜边长是2,周长是2 求这个三角形的面积 例2 如图,在 abc中,ab ac,d点在cb延长线上,求证 ad2 ab2 bd cd 变式1 已知,如图,rt abc中,bac 90 ab ac,d是bc 上任意一点,求证 bd2...