黄冈教育网2024年春季期中考试八年级数学试题。
英山县长冲中学沈立新。
满分:120分;考试时间:120分钟)
一、选择题(每小题3分,共30分)
1.在实数范围内有意义,则x的取值范围是( )
a.x>1 b. c.x<1 d.x≤1
2. △abc中,如果其三边满足关系bc2=ab2+ac2,则△abc的直角是( )
a.∠c b.∠b c.∠a d.不能确定。
3.如图,直线l1∥l2,过l1上两点a,c分别作ab⊥l2,cd⊥l2,则下列说法正确的是()
cd 4. 在rt△abc中,∠c=90°,点d是斜边ab的中点,则下列结论正确的是( )
b. cd=2ab
5. 下列二次根式中,与能合并的是( )
a. b. c. d.
6. 一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是( )
a.88°,108°,88° b.88°,104°,108° c.88°,92°,92° d.88°,92°,88°
7.估计介于( )
a.0.4与0.5之间 b.0.5与0.6之间 c.0.6与0.7之间 d.0.7与0.8之间。
8. 正方形具备而菱形不具备的性质是( )
a.四条边都相等b.四个角都是直角。
c.对角线互相垂直平分 d.每条对角线平分一组对角。
9. 如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接ab,则ab等于( )
a. 195cm b. 200cm c. 205cm d. 210cm
第3题图第9题图第10题图。
10.如图,在矩形abcd中,ab=3,ad=4,点p在ad上,pe⊥ac于e,pf⊥bd于f,则pe+pf等于( )
abcd.
二、填空题(每小题3分,共30分)
11.在△abc中,d、e分别是bc,ac边的中点,若ab=4cm,则de=__cm.
12.计算:×=
13.相邻两边长分别是2+与2﹣的平行四边形的周长是 .
14.如图,在菱形abcd中,点p是对角线ac上的一点,pe⊥ab于点e,若pe=3,则点p到ad的距离为。
15.命题“对角线相等的四边形是矩形”是命题(填“真”或“假”).
第14题图第16题图
16. 如图,正方形abcd的边长为10,mn∥bc分别交ab,cd于点m,n,在上任取两点p,q,那么图中阴影部分的面积是。
17. 化简。
18. 在平面直角坐标系中,□abcd的顶点a、b、d的坐标分别是(0,0),(5,0),(2,3),则顶点c的坐标是。
19. 如图,菱形abcd中,∠bad=60°,m是ab的中点,p是对角线上的一ac个动点,若pm+pb的最小值是3,则ab长为 .
第18题图第19题图第20题图。
20.如图,将边长为1的正方形oapb沿x轴正方向连续翻转2016次,点p依次落在点p1,p2,p3,…,p2016的位置,则p2016的横坐标x2016
三、解答题(共60分)
21.(12分)计算:
22.(6分)一种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?
第22题图
23.(6分)已知x=2-,则代数式(7+4)x2+(2+)x+的值。
24.(7分)如图,□abcd中,de平分∠adc交ab于点e,bf平分∠abc,交cd于点f.求证de=bf.
第24题图
25. (8分) 如图所示,在矩形abcd中,ab=12,ac=20,两条对角线相交于点o.以ob、oc为邻边作第1个平行四边形obb1c,对角线相交于点a1,再以a1b1、a1 c为邻边作第2个平行四边形a1b1c1c,对角线相交于点o1;再以o1b1、o1c1为邻边作第3个平行四边形o1b1b2c1…依次类推.
1)求矩形abcd的面积;
2)求第1个平行四边形obb1c、第2个平行四边形a1b1c1c和第6个平行四边形的面积.
第25题图
26.(9分)小明家准备建造长为28米的蔬菜大棚,示意图如图(1).它的横截面为如图(2)所示的四边形abcd,已知ab=3米,bc=6米,∠bcd=45°,ab⊥bc,d到bc的距离de为1米.矩形棚顶及矩形由钢架及塑料薄膜制作,造价为每平方米120元,其它部分(保温墙体等)造价共9250元,则这个大棚的总造价为多少元?(精确到1元)(下列数据可供参考)
第26题图。
27. (12分) 如图,在rt△abc中,∠b=90°,bc=5,∠c=30°.点d从点c出发沿ca方向以每秒2个单位长的速度向点a匀速运动,同时点e从点a出发沿ab方向以每秒1个单位长的速度向点b匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点d、e运动的时间是t秒(t>0).过点d作df⊥bc于点f,连接de、ef.
1)求ab,ac的长;
2)求证:ae=df;
3)四边形aefd能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
4)当t为何值时,△def为直角三角形?请说明理由。
第27题图。
八年级数学
运河中学初二优生辅导题。1 已知 x 3 2 0中,y为负数,则m的取值范围是 2 如果关于x的方程x 2m 3 3x 7的解为不大于2的非负数,那么 等于5,6,7 c.无解 d.5m7 3 已知关于x的不等式组的整数解共有5个,则a的取值范围是 4 2012武汉 如图,直线经过,两点,则不等式的...
八年级数学
第12章全等三角形。一 选择题 共9小题 1 如图,在四边形abcd中,ab ad,cb cd,若连接ac bd相交于点o,则图中全等三角形共有 a 1对 b 2对 c 3对 d 4对。2 如图所示,点e是矩形abcd的边ad延长线上的一点,且ad de,连结be交cd于点o,连结ao,下列结论不正...
八年级数学
八年级数学试卷 120分 选择题 共34分 的算术平方根是。a 3 b 3 c d 81 2 绝对值最小的实数是。a 1 b 0 c 1 d 不存在。3 使有意义的的取值范围是。a b c d 4 下列各式中,能用平方差公式分解因式的是。a y 4y 4 b 9x 4y c x 4y d 4y x ...