[师]2001×1999=20002-12
它们积的结果都是两个数的平方差,那么其他满足这个特点的运算是否也有这个规律呢?我们继续进行探索.
ⅱ.导入新课。
[师]出示投影片。
计算下列多项式的积.
(1)(x+1)(x-1)
(2)(m+2)(m-2)
(3)(2x+1)(2x-1)
(4)(x+5y)(x-5y)
观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律?再举两例验证你的发现.
(学生讨论,教师引导)
[生甲]上面四个算式中每个因式都是两项.
[生乙]我认为更重要的是它们都是两个数的和与差的积.例如算式(1)是x与1这两个数的和与差的积;算式(2)是m与2这两个数的和与差的积;算式(3)是2x与1这两个数的和与差的积;算式(4)是x与5y这两个数的和与差的积.
[师]这个发现很重要,请同学们动笔算一下,相信你还会有更大的发现.
[生]解:(1)(x+1)(x-1)
x2+x-x-1=x2-12
(2)(m+2)(m-2)
=m2+2m-2m-2×2=m2-22
(3)(2x+1)(2x-1)
2x)2+2x-2x-1=(2x)2-12
(4)(x+5y)(x-5y)
=x2+5y·x-x·5y-(5y)2
=x2-(5y)2
生]从刚才的运算我发现:
也就是说,两个数的和与差的积等于这两个数的平方差,这和我们前面的简便运算得出的是同一结果.
[师]能不能再举例验证你的发现?
[生]能.例如:
即(50+1)(50-1)=502-12.
(-a+b)(-a-b)=(a)·(a)+(a)·(b)+b·(-a)+b·(-b)
(-a)2-b2=a2-b2
这同样可以验证:两个数的和与这两个数的差的积,等于这两个数的平方差.
[师]为什么会是这样的呢?
[生]因为利用多项式与多项式的乘法法则展开后,中间两项是同类项,且系数互为相反数,所以和为零,只剩下这两个数的平方差了.
[师]很好.请用一般形式表示上述规律,并对此规律进行证明.
[生]这个规律用符号表示为:
(a+b)(a-b)=a2-b2.其中a、b表示任意数,也可以表示任意的单项式、多项式.
利用多项式与多项式的乘法法则可以做如下证明:
(a+b)(a-b)=a2-ab+ab-b2=a2-b2.
[师]同学们真不简单.老师为你们感到骄傲.能不能给我们发现的规律(a+b)(a-b)=a2-b2起一个名字呢?
[生]最终结果是两个数的平方差,叫它“平方差公式”怎样样?
[师]有道理.这就是我们**得到的“平方差公式”,请同学们分别用文字语言和符号语言叙述这个公式.
(出示投影)
两个数的和与这两个数的差的积,等于这两个数的平方差.
即:(a+b)(a-b)=a2-b2
平方差公式是多项式乘法运算中一个重要的公式,用它直接运算会很简便,但必须注意符合公式的结构特征才能应用.
在应用中体会公式特征,感受平方差公式给运算带来的方便,从而灵活运用平方差公式进行计算。
(出示投影片)
例1:运用平方差公式计算:
(1)(3x+2)(3x-2)
(2)(b+2a)(2a-b)
(3)(-x+2y)(-x-2y)
例2:计算:
(2)(y+2)(y-2)-(y-1)(y+5)
[师生共析]运用平方差公式时要注意公式的结构特征,学会对号入座.
在例1的(1)中可以把3x看作a,2看作b.
即:(3x+2)(3x-2)=(3x)2-22
(a+b)(a-b)=a2-b2
同样的方法可以完成(2)、(3).如果形式上不符合公式特征,可以做一些简单的转化工作,使它符合平方差公式的特征.比如(2)应先作如下转化:
(b+2a)(2a-b)=(2a+b)(2a-b).
如果转化后还不能符合公式特征,则应考虑多项式的乘法法则.
(作如上分析后,学生可以自己完成两个例题.也可以通过学生的板演进行评析达到巩固和深化的目的)
[例1]解:(1)(3x+2)(3x-2)=(3x)2-22=9x2-4.
(2)(b+2a)(2a-b)=(2a+b)(2a-b)=(2a)2-b2=4a2-b2.
(3)(-x+2y)(-x-2y)=(x)2-(2y)2=x2-4y2.
[例2]解:(1)102×98=(100+2)(100-2)
(2)(y+2)(y-2)-(y-1)(y+5)
=y2-22-(y2+5y-y-5)
=y2-4-y2-4y+5
=-4y+1.
[师]我们能不能总结一下利用平方差公式应注意什么?
[生]我觉得应注意以下几点:
(1)公式中的字母a、b可以表示数,也可以是表示数的单项式、多项式即整式.
(2)要符合公式的结构特征才能运用平方差公式.
(3)有些多项式与多项式的乘法表面上不能应用公式,但通过加法或乘法的交换律、结合律适当变形实质上能应用公式.
[生]运算的最后结果应该是最简才行.
[师]同学们总结得很好.下面请同学们完成一组闯关练习.优胜组选派一名代表做总结发言.
ⅲ.随堂练习。
出示投影片:
计算:(1)(a+b)(-b+a)
(2)(-a-b)(a-b)
(3)(3a+2b)(3a-2b)
(4)(a5-b2)(a5+b2)
(5)(a+2b+2c)(a+2b-2c)
(6)(a-b)(a+b)(a2+b2)
ⅳ.课时小结。
通过本节学习我们掌握了如下知识.
(1)平方差公式。
两个数的和与这两个数的差的积等于这两个数的平方差.这个公式叫做乘法的平方差公式.即(a+b)(a-b)=a2-b2.
(2)公式的结构特征。
①公式的字母a、b可以表示数,也可以表示单项式、多项式;
②要符合公式的结构特征才能运用平方差公式;
③有些式子表面上不能应用公式,但通过适当变形实质上能应用公式.如:(x+y-z)(x-y-z)=[x-z)+y][(x-z)-y]=(x-z)2-y2.
ⅴ.课后作业。
1.课本p179练习.
2.课本p182~p183习题15.3─1题.
《**训练》
板书设计。
八年级数学平方差公式
15 3 1 平方差公式 教学设计。平定县南坳中学郭斌。一 内容和内容解析。九年义务教育数学 课程标准 中明确指出 数学教学是数学活动的教学,学生是数学学习的主人。教师的职责在于向学生提供从事数学活动的机会,在活动中激发学生的学习潜能,引导学生积极自主探索 合作交流与实践创新。代数是一门基础的数学学...
八年级数学教案 平方差公式教案
八年级数学教案。教学过程。提出问题,创设情境。师 你能用简便方法计算下列各题吗?生甲 直接乘比较复杂,我考虑把它化成整百,整千的运算,从而使运算简单,2001可以写成2000 1,1999可以写成2000 1,那么2001 1999可以看成是多项式的积,根据多项式乘法法则可以很快算出。生乙 那么99...
八年级数学乘法公式 平方差公式教学设计
乘法公式 1 平方差公式。一 教学目标 1 经历探索平方差公式的过程,进一步发展符号感和推理能力。2 会推导平方差公式,并能运用公式进行简单计算。3 认识平方差及其几何背景。4 在合作 交流和讨论中发掘知识,并体验学习的乐趣。二 教学重点 体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简...