课题:17.1 勾股定理。
教学过程设计。
课后反思: 学生的拼图活动不彻底,没有充分发挥他们的创造性。
17.1 勾股定理》 教案说明。
教材:人教版义务教育课程标准实验教科书《数学》八年级(下)
课题: 17.1 《17.1 勾股定理》
一、授课内容的数学本质与教学目标定位。
勾股定理是初等几何中的一个基本定理, 也是几何中一个非常重要的定理,它有着丰富的历史背景,在理论上占有重要地位,是人类最伟大的十个科学发现之一。勾股定理是直角三角形的一条非常重要的性质,它将数与形密切联系起来,揭示了一个直角三角形三边之间的数量关系。
通过本节课的教学让学生了解勾股定理的文化背景、体验勾股定理的探索过程, 运用勾股定理进行简单计算。在勾股定理的探索过程中,发展合情推理能力,体会数形结合、由特殊到一般、转化的数学思想。通过拼图活动,体验数学思维的严谨性,发展形象思维。
通过对勾股定理历史的了解,感受数学文化,激发学习热情。在**活动中,学会与人合作并能与他人交流思维的过程和**结果,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神,使不同的学生在数学上得到不同的发展。
二、学习本内容的基础以及今后有何用处,包括本内容的承前启后、地位作用、与其他知识内容的联系、与其它相关学科的联系以及应用。
勾股定理是欧氏平面几何的一个核心结果,是三角学的出发点。它在直角三角形的三条边之间建立了固定关系,从而将原来对几何学的感性认识精确化,真正意义的几何学才可以确立。勾股定理启发了人类对数学的深入思考,促成了解析几何及三角学的建立,使数学的几何与代数两大门类结合起来,为数学更进一步的发展拓宽了道路。
勾股定理的学习建立在掌握一般三角形的性质、直角三角形以及三角形全等的基础上, 是直角三角形性质的拓展,通过本节课的学习为下节课学习勾股定理在实际生活中的应用奠定了基础,也是后续学习解直角三角形、余弦定理的基础,是三角形知识的深化。利用勾股定理可以解决许多直角三角形中的计算问题;可以进行几何计算如求边长、周长、面积等,可以利用勾股定理作图如在数轴上作出表示无理数的点;它在日常生活中有着广泛的应用,诸如用于无法直接实现的测量;它在物理学中的力学、光学的学习中都有所应用,科学家们甚至试图利用勾股定理探索宇宙奥秘。
三、教学诊断分析,学习本内容时容易了解与误解的地方。
新课程标准中的内容标准明确要求学生体验勾股定理的探索过程,会运用勾股定理解决简单问题。本节课是勾股定理这部分内容的起始课,为使学生能够完成课标要求,顺利进行后续学习,本节课教学重点确定为--探索和证明勾股定理。让学生直接发现两条直角边的平方和等于斜边的平方,有一定的难度。
为了有效突破重点,在教学过程中由浅入深地设置问题,引导学生从问题出发,运用独立思索和合作交流的学习方式,根据观察、实验的结果,通过归纳、类比的方法得出猜想。首先让学生发现以直角三角形两直角边为边长的正方形的面积与以斜边为边长的正方形的面积之间的关系,然后再转化为直角三角形三边之间的数量关系,得出勾股定理。**过程中,先从等腰直角三角形入手,容易发现规律。
再从特殊到一般,**一般直角三角形是否满足规律。
本节课的教学难点确定为--通过剪拼图形证明勾股定理。勾股定理的证明方法很多,本节课采用的是面积证法。首先由于前面没有系统学习面积证法,这种证明方法学生感到很陌生,尤其是觉得推理根据不明确不像证明,没有教师的启发引领,学生不容易独立想到;其次,将两个正方形简拼成一个大正方形,需要精准的分割、拼接,如果对赵爽弦图没有足够的了解和认识,无法正确制定分割方案,而赵爽弦图又是本节课刚刚了解的。
因此,通过剪拼图形证明勾股定理确定为本节课的难点。为了帮助学生分散难点,首先应向学生说明,图形割补拼接后,只要没有重叠、没有空隙,面积不会改变。其次,教师提出问题,让学生在独立思考的基础上以小组为单位,动手拼接,通过拼图活动,降低难点,调动学生思维的积极性,建立初步的空间观念,发展形象思维,为学生提供从事数学活动的机会,使学生直观感受知识的形成过程,对定理的理解更加深刻,体会数学中的数形结合思想。
四、本节课的教法特点以及预期效果分析。
整节课以"问题情境--分析**--得出猜想--实践验证--总结升华"为主线,使学生亲身体验勾股定理的探索和验证过程,让学生得到可持续发展,努力做到由传统的数学课堂向实验课堂转变。
根据教材的特点,本节课从知识与方法、能力与素质的层面确定了相应的教学目标.把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对**过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的。
本节课运用的教学方法是"引导发现、合作**"式,采用教师引导启发、学生独立思考、合作**、师生讨论交流相结合的方式,为学生提供观察、思考、探索、发现的时间和空间.使学生以一个创造者或发明者的身份去**知识,从而形成自觉实践的氛围,达到收获的目的。整堂课,教师重点关注学生的**精神以及交流、合作意识。
通过本节课的教学,引领学生从不同的角度发现问题、用多样化策略解决问题,通过证明勾股定理,体验数学证明的灵活、精巧、优美,并且激发出课下继续**、收集勾股定理的证明方法的学习热情。能够掌握勾股定理及其基本应用,即在直角三角形中已知两边求第三边的方法,为下节课学习勾股定理在实际生活中的应用奠定了基础。通过勾股定理的背景知识,使学生感受勾股定理的丰富文化内涵,发现它的实际用途和美学价值,通过介绍我国古代学者在勾股定理研究方面的卓越成就,感受我国古人对数学的专研精神和聪明才智,可以培养同学们的民族自豪感和爱国情怀。
2019 新人教版八年级数学下册《勾股定理》 第一课时 教案
活动一 课堂引入。目前世界上许多科学家正在试图寻找其他星球的 人 为此向宇宙发出了许多信号,如地球上人类的语言 各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是 文明人 那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就...
人教版八年级下册数学人教版八年级数学 勾股定理说课稿
勾股定理 的说课稿。大地二中。张清泉。尊敬的各位评委 各位教师 你们好!今天我说课的课题是 勾股定理 本课选自九年义务教育人教版八年级下册初中数学第十七章第一节的第一课时。下面我从教学背景分析与处理 教学策略 教学流程等方面对本课的设计进行说明。一 教学背景分析。1 教材分析。本节课是学生在已经掌握...
初中人教版数学八年级下册17 2《勾股定理逆定理》
17.2勾股定理的逆定理 本课在学习勾股定理的基础上,研究当三角形中两边的平方和等于第三边的平方时,这个三角形是否为直角三角形 在研究过程中,介绍了逆命题 逆定理的概念 应用勾股定理及其逆定理解决问题 体会利用勾股定理及其逆定理,可以通过边长关系的计算,判断一个角是否是直角 1.理解勾股定理的逆定理...