沪科版八年级下册《18 1勾股定理》教学设计

发布 2023-01-09 18:09:28 阅读 7312

学习目标。

1.经历探索勾股定理及验证勾股定理的过程,体会数形结合的思想;(重点)

2.掌握勾股定理,并运用它解决简单的计算题.(重点)

教学过程。一、情境导入。

如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各**形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?

二、合作**。

**点一:勾股定理的证明。

作8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,将它们像下图所示拼成两个正方形.求证:a2+b2=c2.

解析:从整体上看,这两个正方形的边长都是a+b,因此它们的面积相等.我们再用不同的方法来表示这两个正方形的面积,即可证明勾股定理.

证明:由图易知,这两个正方形的边长都是a+b,∴它们的面积相等.左边的正方形面积可表示为a2+b2+ab×4,右边的正方形面积可表示为c2+ab×4.∵a2+b2+ab×4=c2+ab×4,∴a2+b2=c2.

2·1·c·n·j·y

方法总结:根据拼图,通过对拼接图形的面积的不同表示方法,建立相等关系,从而验证勾股定理.

变式训练:见《学练优》本课时练习“课后巩固提升”第11题。

**点二:勾股定理。

类型一】 直接利用勾股定理求长度。

如图,已知在△abc中,∠acb=90°,ab=5cm,bc=3cm,cd⊥ab交ab于点d,求cd的长.21教育名师原创作品。

解析:先运用勾股定理求出ac的长,再根据s△abc=ab·cd=ac·bc,求出cd的长.

解:∵在△abc中,∠acb=90°,ab=5cm,bc=3cm,∴由勾股定理得ac2=ab2-bc2=52-32=42,∴ac=4cm.又∵s△abc=ab·cd=ac·bc,∴cd===cm),故cd的长是。

方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.【出处:21教育名师】

变式训练:见《学练优》本课时练习“课堂达标训练”第4题。

类型二】 利用勾股定理求面积。

如图,以rt△abc的三边长为斜边分别向外作等腰直角三角形.若斜边ab=3,则图中△abe的面积为___阴影部分的面积为___

解析:因为ae=be,∠e=90°,所以s△abe=ae·be=ae2.又因为ae2+be2=ab2,所以2ae2=ab2,所以s△abe=ab2=×32=;同理可得s△ahc+s△bcf=ac2+bc2.

又因为ac2+bc2=ab2,所以阴影部分的面积为ab2+ab2=ab2=×32=.故分别填,.

方法总结:求解与直角三角形三边有关的图形面积时,要结合图形想办法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系. 21*cnjy*com

变式训练:见《学练优》本课时练习“课堂达标训练”第7题。

类型三】 勾股定理与数轴。

如图所示,数轴上点a所表示的数为a,则a的值是( )

a.+1 b.-+1 c.-1 d.

解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出a点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为=,∴1到a的距离是。那么点a所表示的数为-1.

故选c.

方法总结:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点a的符号后,点a所表示的数是距离原点的距离.

变式训练:见《学练优》本课时练习“课后巩固提升”第4题。

类型四】 利用勾股定理证明等式。

如图,已知ad是△abc的中线.求证:ab2+ac2=2(ad2+cd2).

解析:结论中涉及线段的平方,因此可以考虑作ae⊥bc交bc于点e.在△abc中构造直角三角形,利用勾股定理进行证明.【**:21·世纪·教育·网】

证明:如图,过点a作ae⊥bc交bc于点e.在rt△abe、rt△ace和rt△ade中,ab2=ae2+be2,ac2=ae2+ce2,ae2=ad2-ed2,∴ab2+ac2=(ae2+be2)+(ae2+ce2)=2(ad2-ed2)+(db-de)2+(dc+de)2=2ad2-2ed2+db2-2db·de+de2+dc2+2dc·de+de2=2ad2+db2+dc2+2de(dc-db).又∵ad是△abc的中线,∴bd=cd,∴ab2+ac2=2ad2+2dc2=2(ad2+cd2).2-1-c-n-j-y

方法总结:构造直角三角形,利用勾股定理把需要证明的线段联系起来.一般地,涉及线段之间的平方关系问题时,通常沿着这个思路去分析问题.

类型五】 运用勾股定理解决折叠中的有关计算。

如图,四边形abcd是边长为9的正方形纸片,将其沿mn折叠,使点b落在cd边上的b′处,点a对应点为a′,且b′c=3,则am的长是( )

a.1.5 b.2 c.2.25 d.2.5

解析:连接bm,mb′.设am=x,在rt△abm中,ab2+am2=bm2.

在rt△mdb′中,b′m2=md2+db′2.∵mb=mb′,∴ab2+am2=bm2=b′m2=md2+db′2,即92+x2=(9-x)2+(9-3)2,解得x=2,即am=2.故选b.

【版权所有:21教育】

方法总结:解题的关键是设出适当的线段的长度为x,然后用含有x的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.

变式训练:见《学练优》本课时练习“课后巩固提升”第10题。

类型六】 分类讨论思想在勾股定理中的应用。

在△abc中,ab=20,ac=15,ad为bc边上的高,且ad=12,求△abc的周长.

解析:应考虑高ad在△abc内和△abc外的两种情形.

解:当高ad在△abc内部时,如图①.在rt△abd中,由勾股定理,得bd2=ab2-ad2=202-122=162,∴bd=16.

在rt△acd中,由勾股定理,得cd2=ac2-ad2=152-122=81,∴cd=9.∴bc=bd+cd=25,∴△abc的周长为25+20+15=60;

当高ad在△abc外部时,如图②.同理可得bd=16,cd=9.∴bc=bd-cd=7,∴△abc的周长为7+20+15=42.综上所述,△abc的周长为42或60.

方法总结:题中未给出图形,作高构造直角三角形时,易漏掉原三角形为钝角三角形的情况.如在本例题中,易只考虑高ad在△abc内的情形,忽视高ad在△abc外的情形.

变式训练:见《学练优》本课时练习“课后巩固提升”第8题。

学习目标。1.会用勾股定理解决一些简单的实际问题;(重点)

2.通过对实际问题的**,培养学生分析问题和解决问题的能力.

教学过程。一、情境导入。

一个门框的宽为1.5m,高为2m,如图所示,一块长3m,宽2.2m的薄木板能否从门框内通过?为什么?21世纪教育网版权所有。

二、合作**。

**点:勾股定理的应用。

类型一】 勾股定理的直接应用。

如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子bc的长为13m,此人以0.5m每秒的速度收绳.问6秒后船向岸边移动了多少(假设绳子是直的,结果保留根号)?21教育网。

解析:开始时,ac=5m,bc=13m,即可求得ab的值,6秒后根据bc,ac长度即可求得ab的值,然后解答即可.21·世纪*教育网。

解:在rt△abc中,bc=13m,ac=5m,则ab==12m,6秒后,b′c=10m,则ab′==5m,则船向岸边移动距离为(12-5)

方法总结:本题直接考查勾股定理在直角三角形中的运用,求出6秒后ab的长度是解题的关键.

变式训练:见《学练优》本课时练习“课堂达标训练”第2题。

类型二】 利用勾股定理解决方位角问题。

如图所示,在一次夏令营活动中,小明从营地a点出发,沿北偏东60°方向走了100m到达b点,然后再沿北偏西30°方向走了100m到达目的地c点,求出a、c两点之间的距离.【**:21cnj*

解析:根据所走的方向可判断出△abc是直角三角形,根据勾股定理可求出解.

解:∵ad∥be,∴∠abe=∠dab=60°.∵cbf=30°,∴abc=180°-∠abe-∠cbf=180°-60°-30°=90°.

在rt△abc中,ab=100m,bc=100m,∴ac===200(m),∴a、c两点之间的距离为200m.21*cnjy*com

方法总结:先确定是直角三角形,根据各边长,用勾股定理可求出ac的长.

变式训练:见《学练优》本课时练习“课后巩固提升”第1题。

类型三】 利用勾股定理解决最短距离问题。

如图,长方体的长be=15cm,宽ab=10cm,高ad=20cm,点m在ch上,且cm=5cm,一只蚂蚁如果要沿着长方体的表面从点a爬到点m,需要爬行的最短距离是多少?

解:分三种情况比较最短距离:如图①所示,am==5 (cm);如图②所示,am==25(cm);如图③所示,am==5 (cm).∵5cm>5cm>25cm,∴第二种短些,此时最短距离为25cm.

课题181勾股定理 人教版八年级下册 教学设计

课题 18 1勾股定理 人教版八年级下册 教学设计。莆田擢英中学朱庆云。教学任务。教学准备。教学流程安排。教学过程设计。教学设计说明。根据新的课程标准以及人教版教材的特点,课堂教学要为学生的数学学习构筑起点,为他们提供现实 有趣 富有挑战的学习素材,展现教学知识的形成与应用过程。为了取得理想效果,本...

181勾股定理教案新人教版八年级下3套 勾股定理教案

勾股定理 2 第二课时。一 引入。回顾上节课所学习的勾股定理的验证方法。二 动手操作,合作 1 利用五巧板拼 青朱出入图 教师利用课件介绍 青朱出入图 的历史 你能利用 青朱出入图 验证勾股定理吗?给学生提供充分实践 探索和交流的时间,鼓励他们积极思考解决问题的方法,并与他人进行合作与交流。2 教师...

八年级下册数学《勾股定理》勾股定理的认识知识点整理

有疑问的题目请发在 51加速度学习网 上,让我们来为你解答。加速度学习网整理。一 本节学习指导。勾股定理是最常用定理之一,广泛的应用于各种几何计算。同学们一定要会运用,掌握好本节的基本知识即可,然后做适当的练习,在下一章学习的四边形中很多证明就需要用到勾股定理。二 知识要点。1 勾股定理 直角三角形...