宜都外校九年级数学训练题(12.22)
姓名学号___分数___家长签字。
一、选择题、每小题3分,共45分。
1.下图中,每张方格纸上都画有一个圆,只用不带刻度的直尺就能确定圆心位置的是( )
a. b. c. d.
2.下列说法:①三点确定一个圆;②平分弦的直径必垂直于这条弦;③圆周角等于圆心角的一半;④等弧所对的圆心角相等;⑤各角相等的圆内接多边形是正多边形.其中正确的有( )
a.1个b.2个c.3个d.4个。
3.已知关于x的一元二次方程(a-5)x2-4x-1=0有实数根,则a的取值范围是( )
a.a≥l b.a>l且a≠5 c.a≥l且a≠5 d.a≠5
4.已知⊙o的半径为3,圆心o到直线l的距离为2,则直线l与⊙o的位置关系是( )
a.相交 b.相切c.相离d.不能确定。
5.根据下面**中的取值,方程x2+x﹣3=0有一个。
根的近似值(精确到0.1)是( )
a.1.5 b.1.2 c.1.3 d.1.4
6.如图,已知图形是中心对称图形,则对称中心是( )a.点c b.点d c.线段bc的中点 d.线段fc的中点。
7.如图,四边形abcd是⊙o的内接四边形,若∠bod=88°,则∠bcd的度数是( )
a.88b.92c.106° d.136°
8.如图,线段ab是⊙o的直径,弦cd⊥ab,∠cab=20°,则∠bod等于( )
a.30° b.70° c.40° d.20°
9.如图,在等边△abc中,点o在ac上,且ao=3,co=6,点p是ab上一动点,连接op,将线段op绕点o逆时针旋转60°得到线段od.要使点d恰好落在bc上,则ap的长是( )
a.4b.5c.6d.8
10.若方程ax2+bx+c=0的两个根是﹣3和1,那么二次函数y=ax2+bx+c的图象的对称轴是直线( )
a.x=﹣3 b.x=﹣2 c.x=﹣1d.x=1
11.已知二次函数y=(x﹣1)2+4,若y随x的增大而减小,则x的取值范围是( )
a.x<﹣1 b.x>4 c.x<1d.x>1
12.用长为100 cm的金属丝制成一个矩形框子,框子的面积不可能是( )
a.325cm2 b.500cm2 c.625cm2 d.800cm2
13.用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( )
a. b.1 cd.2
14.若将直尺的0cm刻度线与半径为5cm的量角器的0°线对齐,并让量角器沿直尺的边缘无滑动地滚动(如图),则直尺上的10cm刻度线对应量角器上的度数约为( )a.90° b.115° c.125° d.180°
15.已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是( )
a.abc<0 b.-3a+c<0 c.b2-4ac<0
d.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c.
二、解答题(本大题共9题,共75分)
16.(6分)解方程:(x+1)(x﹣2)=2x(x﹣2)
17. (6分)如图,已知a为⊙o外一点,连结oa交⊙o于p,ab为⊙o的切线,b为切点,ap=5cm,ab=cm,则劣弧bp与ab、ap围成的阴影部分面积为多少?
18.(7分)关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△abc三边的长.
1)如果方程有两个相等的实数根,试判断△abc的形状,并说明理由;
2)如果△abc是等边三角形,试求这个一元二次方程的根.
19. (7分)如图,圆锥的底面半径为1,母线长为3,一只蚂蚁要从底面圆周上一点b出发,沿圆锥侧面爬到过母线ab的轴截面上另一母线ac的中点上,问它爬行的路线是多少?
21.(8分)如图,⊙o的弦ad∥bc,过点d的切线交bc的延长线于点e,ac∥de交bd于点h,do及延长线分别交ac,bc于点g,f.
1)求证:fc=ce; (2)若弦ad=5 cm,ac=8 cm,求⊙o的半径.
21.(8分)如图,ab是⊙o的直径,d为⊙o 上一点,c是劣弧的中点,过c点作ad的垂线,分别交ad、ab的延长线于e、f两点.
1)求证:ef是⊙o的切线;(2)若de=bc,求图中阴影部分面积和△aef的面积之比.
22.(10分)某水渠的横截面呈抛物线,水面的宽度为ab(单位:米),现以ab所在直线为x轴,以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为o.已知ab=8米,设抛物线解析式为y=ax2-4.
(1)求a的值; (2)点c(-1,m)是抛物线上一点,点c关于原点o的对称点为点d,连接cd,bc,bd,求△bcd的面积.
23. (10分)2024年某园林绿化公司购回一批桂花树,全部售出后利润率为20%.
1)求2024年每棵树的售价与成本的比值。
2)2024年,该公司计划购入桂花树数量增加的百分数与每棵树成本降低的百分数均为m.经测算,若每棵桂花树售价不变,则总成本将比2024年的总成本减少8万元:若每棵树售价提高百分数也为m,则销售这批树的利润率将达到4m.
求m的值及相应的2024年这批桂花树总成本。
利润率=×100%)
24.(12分)如图,在平面直角坐标系中,正方形abcd和正方形defg的边长分别为2a,2b,点a、d、g在y轴上,坐标原点o为ad的中点,抛物线y=mx2过c、f两点,连接fd并延长交抛物线于点m。
1)若a=1,求m和b的值;
2)求b/a的值;
3)判断以fm为直径的圆与ab所在直线的位置关系,并说明理由。
宜都外校七年级期中数学试卷
宜都外校七年级数学期中试卷分数 一 选择题 每题3分,共8题24分 1 如果水位下降6 m时水位变化记为 6 m,那么水位升高6 m时水位变化记为 a 3 m b 3 m c 6 m d 6 m 2 化简a 2 1 3a 的正确结果是 a 7a 2 b 2 5a c 4a 2 d 2a 2 3 下列...
宜都外校八年级上数学测试题
宜都外校八年级上数学测试题 2011.11.22 班级 姓名得分 一 选择题 每小题3分,共30分 1 同时适合方程和的是 ab cd 2 方程组的解为 则被遮盖的两个数分别为 3 为了改善住房条件,小亮的父母考察了某小区的两套楼房,套楼房在第层楼,套楼房在第层楼,套楼房的面积比套楼房的面积大24平...
2019武汉外校六年级数学训练题
六年级数学业班级姓名 训练a卷。1.1 计算下列各题,你能发现从1起求若干奇数和的规律吗?2 求1 3 5 99 3 想一想,怎样计算下列各数的和。2.用花 白两种正方形的瓷砖拼成大的正方形图形,要求中间用白瓷砖,四周一圈用花瓷砖 如下图所示 1 填写下列 想一想,这些数量之间有什么关系?2 如果所...