24.1 圆。
第一课时。总第24课时)
教学内容。1. 圆的有关概念。
2. 与圆有关的一些性质。
3. 理解圆的定义。
教学目标。了解圆的有关概念.
从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.
重难点、关键。
圆的两种定义。
直径与弦的关系。
优弧与劣弧。
教学过程。一、复习引入。
(学生活动)请同学口答下面两个问题(提问。
一、两个同学)
1.举出生活中的圆。
三、四个.2.你能讲出形成圆的方法有多少种?
老师点评(口答):(1)如车轮、杯口、时针等.(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆.
二、探索新知。
从以上圆的形成过程,我们可以得出:
在一个平面内,线段oa绕它固定的一个端点o旋转一周,另一个端点所形成的图形叫做圆.固定的端点o叫做圆心,线段oa叫做半径.
以点o为圆心的圆,记作“⊙o”,读作“圆o”.
学生四人一组讨论下面的两个问题:
问题1:图上各点到定点(圆心o)的距离有什么规律?
问题师提问几名学生并点评总结.
(1)图上各点到定点(圆心o)的距离都等于定长(半径r);
(2)到定点的距离等于定长的点都在同一个圆上.
因此,我们可以得到圆的新定义:圆心为o,半径为r的圆可以看成是所有到定点o的距离等于定长r的点组成的图形.
同时,我们又把。
①连接圆上任意两点的线段叫做弦,如图线段ac,ab;
②经过圆心的弦叫做直径,如图24-1线段ab;
③圆上任意两点间的部分叫做圆弧,简称弧,“以a、c为端点的弧记作”,读作“圆弧”或“弧ac”.大于半圆的弧(如图所示叫做优弧,小于半圆的弧(如图所示)或叫做劣弧.
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
师提问几名学生并点评总结.
(1)图上各点到定点(圆心o)的距离都等于定长(半径r);
(2)到定点的距离等于定长的点都在同一个圆上.
因此,我们可以得到圆的新定义:圆心为o,半径为r的圆可以看成是所有到定点o的距离等于定长r的点组成的图形.
3)能够重合的两个圆叫做等圆。
4)在同圆或等圆中,能够互相重合的弧叫做等弧。
5)试想一下,如果车轮不是圆的(比如椭圆或正方形的),坐车的人会是什么感觉?
三·课堂练习。
课本第80页练习1.2
四·布置作业。
随堂10分钟圆第一节。
24.1 圆。
第2课时 总第25课时。
教学内容。1.垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧及其它们的应用.
教学目标。理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.
利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.
重难点、关键。
1.重点:垂径定理及其运用.
2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题.
教学过程。一、复习引入。
1.你能讲出形成圆的方法有多少种?
老师点评(口答):(1)如车轮、杯口、时针等.(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆.
二、探索新知。
(学生活动)请同学们回答下面两个问题.
1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?
2.你是用什么方法解决上述问题的?与同伴进行交流.
(老师点评)1.圆是轴对称图形,它的对称轴是直径,我能找到无数多条直径.
3.我是利用沿着圆的任意一条直径折叠的方法解决圆的对称轴问题的.
因此,我们可以得到:
(学生活动)请同学按下面要求完成下题:
如图,ab是⊙o的一条弦,作直径cd,使cd⊥ab,垂足为m.
(1)如图是轴对称图形吗?如果是,其对称轴是什么?
(2)你能发现图中有哪些等量关系?说一说你理由.
(老师点评)(1)是轴对称图形,其对称轴是cd.
(2)am=bm,,,即直径cd平分弦ab,并且平分及.
这样,我们就得到下面的定理:
下面我们用逻辑思维给它证明一下:
已知:直径cd、弦ab且cd⊥ab垂足为m
求证:am=bm,,.
分析:要证am=bm,只要证am、bm构成的两个三角形全等.因此,只要连结oa、ob或ac、bc即可.
证明:如图,连结oa、ob,则oa=ob
在rt△oam和rt△obm中。
∴rt△oam≌rt△obm
∴am=bm
∴点a和点b关于cd对称。
∵⊙o关于直径cd对称。
∴当圆沿着直线cd对折时,点a与点b重合,与重合,与重合.
∴,进一步,我们还可以得到结论:
(本题的证明作为课后练习)
例1.如图,一条公路的转弯处是一段圆弦(即图中,点o是的圆心,其中cd=600m,e为上一点,且oe⊥cd,垂足为f,ef=90m,求这段弯路的半径.
分析:例1是垂径定理的应用,解题过程中使用了列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.
解:如图,连接oc
设弯路的半径为r,则of=(r-90)m
∵oe⊥cd
∴cf=cd=×600=300(m)
根据勾股定理,得:oc2=cf2+of2
即r2=3002+(r-90)2 解得r=545
∴这段弯路的半径为545m.
三、巩固练习。
教材p80 练习 p82 练习.
四、应用拓展。
例2.有一石拱桥的桥拱是圆弧形,如图24-5所示,正常水位下水面宽ab=60m,水面到拱顶距离cd=18m,当洪水泛滥时,水面宽mn=32m时是否需要采取紧急措施?请说明理由.
分析:要求当洪水到来时,水面宽mn=32m是否需要采取紧急措施,只要求出de的长,因此只要求半径r,然后运用几何代数解求r.
解:不需要采取紧急措施。
设oa=r,在rt△aoc中,ac=30,cd=18
r2=302+(r-18)2 r2=900+r2-36r+324
解得r=34(m)
连接om,设de=x,在rt△moe中,me=16
342=162+(34-x)2
162+342-68x+x2=342 x2-68x+256=0
解得x1=4,x2=64(不合设)
∴de=4∴不需采取紧急措施.
五、归纳小结(学生归纳,老师点评)
本节课应掌握:
1.圆是轴对称图形,任何一条直径所在直线都是它的对称轴.
2.垂径定理及其推论以及它们的应用.
六、布置作业。
1.教材p87 复习巩固.
2垂径定理推论的证明.
作业设计。第3课时
总第26课时
一、选择题.
1.如图1,如果ab为⊙o的直径,弦cd⊥ab,垂足为e,那么下列结论中,错误的是( )
a.ce=de b. c.∠bac=∠bad d.ac>ad
2.如图2,⊙o的直径为10,圆心o到弦ab的距离om的长为3,则弦ab的长是( )
a.4 b.6 c.7 d.8
3.如图3,在⊙o中,p是弦ab的中点,cd是过点p的直径,则下列结论中不正确的是( )
a.ab⊥cd b.∠aob=4∠acd c. d.po=pd
二、填空题。
1.如图4,ab为⊙o直径,e是中点,oe交bc于点d,bd=3,ab=10,则ac=__
2.p为⊙o内一点,op=3cm,⊙o半径为5cm,则经过p点的最短弦长为最长弦长为___
3.如图5,oe、of分别为⊙o的弦ab、cd的弦心距,如果oe=of,那么___只需写一个正确的结论)
三、综合提高题。
1.如图24-11,ab为⊙o的直径,cd为弦,过c、d分别作cn⊥cd、dm⊥cd,分别交ab于n、m,请问图中的an与bm是否相等,说明理由.
2.如图,⊙o直径ab和弦cd相交于点e,ae=2,eb=6,∠deb=30°,求弦cd长.
3.(开放题)ab是⊙o的直径,ac、ad是⊙o的两弦,已知ab=16,ac=8,ad=8,求∠dac的度数.
答案:一、1.d 2.d 3.d
二、1.8 2.8 10 3.ab=cd
三、1.an=bm 理由:过点o作oe⊥cd于点e,则ce=de,且cn∥oe∥dm.
∴on=om,∴oa-on=ob-om,an=bm.
2.过o作of⊥cd于f,如右图所示。
ae=2,eb=6,∴oe=2,ef=,of=1,连结od,在rt△odf中,42=12+df2,df=,∴cd=2.
3.(1)ac、ad在ab的同旁,如右图所示:
∵ab=16,ac=8,ad=8,∴ac=(ab),∴cab=60°,同理可得∠dab=30°,∴dac=30°.
(2)ac、ad在ab的异旁,同理可得:∠dac=60°+30°=90°.
24.1 圆(第4课时)
总第27课时。
教学内容。1.圆心角的概念.
2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
3.定理的推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等.
九年级数学《二次函数》教案
九年级数学 二次函数 教案。导语 二次函数是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型,应用非常广泛,许多实际问题往往可以归结为二次函数加以研究。下面是为您收集的教案,希望对您有所帮助。一。学习目标。1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。...
九年级数学总复习教案九
第九章视图与投影与中考。中考要求及命题趋势。1 掌握基本几何图与其三视图 展开图之间的关系。2 理解中心投影和平行投影的性质 应试对策 要正确判断简单几何体三视图,正确画出基本几何体的三视图。根据实例掌握中心投影与平行投影的有关性质,根据实际问题画出视线 盲区。回顾与思考 例题经典 展开与折叠。例1...
九年级数学圆教案
5.1圆 二 班级姓名学号。学习目标。1 认识圆的弦 弧 优弧与劣弧 直径及其相关概念 2 认识圆心角 等圆 等弧的概念 3 了解 同圆或等圆的半径相等 并能用之解决问题 学习重点 了解圆的相关概念。学习难点 容易混淆圆的概念的辨析。教学过程。一 情境创设。前一节课,学习了圆的有关概念,探索了点与圆...