初二数学试卷

发布 2022-07-09 07:18:28 阅读 4474

初二数学期末考试。

满分100分附加题15分时间100分钟)

考前祝愿语:看着做吧……

一、证明题:

np完全问题:

np里面的n,不是non-polynomial的n,是non-deterministic,p代表polynomial倒是对的。

np就是non-deterministic polynomial的问题,也即是多项式复杂程度的非确定性问题。人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们於是就猜想,是否这类问题,存在一个确定性算法,可以在指数时间内,直接算出或是搜寻出正确的答案呢?

这就是著名的np=p?的猜想,试着证明一下。

霍奇猜想:霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

即在非奇异复射影代数簇上, 任一霍奇类是代数闭链类的有理线性组合,试着证明一下。

庞加莱猜想:

2023年,庞加莱在一篇**中提出了一个看似很简单的拓扑学的猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩到一点,那么这个空间一定是一个三维的圆球。但2023年发现提法中有错误,并对之进行了修改,被推广为:

“任何与n维球面同伦的n维封闭流形必定同胚于n维球面。”后来,这个猜想被推广至三维以上空间,被称为“高维庞加莱猜想”, 试着证明一下。

黎曼假设:2023年5月24日,美国克雷(clay)数学研究所公布了7个千禧数学问题。每个问题的奖金均为100万美元。

其中黎曼假设被公认为目前数学中(而不仅仅是这7个)最重要的猜想。黎曼假设并非第一次在社会上征寻解答,早在2023年的巴黎国际数学家大会上,德国数学家希尔伯特列出23个数学问题.其中第8问题中便有黎曼假设。

具体概述关于黎曼-希尔伯特问题是:具有给定单值群的线性微分方程的存在性证明。即:关于素数的方程的所有有意义的解都在一条直线上,试着证明一下。

纳维-斯托克斯方程:

纳维-斯托克斯方程(n**ier-stokesequations),以克劳德-路易-纳维(claude-louisn**ier)和乔治-盖伯利尔-斯托克斯命名,是一组描述象液体和空气这样的流体物质的方程,简称n-s方程。因2023年由c.-l.

-m.-h.纳维建立和2023年由斯托克斯改进而得名,请你证明此方程。

bsd猜想:

数学家总是被诸如x +y =z 那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。

当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。bsd猜想是有可能破解的,试着证明一下。

三、几何题:

1 设有一个命题:尺规作图,将任意一个角3等分,如果成立,画出作法;如果不成立,请证明。

设有一个命题:尺规作图,有一个已知圆,作出与其面积相等的正方形,如果成立,画出作法;如果不成立,请证明。

设有一个命题:尺规作图,有一个立方体,作出体积是其体积2倍的立方体,如果成立,画出作法;如果不成立,请证明。

六、压轴题:

2023年~2023年,哥德**与欧拉保持了长达三十五年的书信往来。在2023年6月7日给欧拉的信中,哥德**提出了一个命题。命题是这样的:

大致可以分为两个猜想:①每个不小于6的偶数都可以表示为两个奇素数之和;

每个不小于9的奇数都可以表示为三个奇素数之和。

很长时间都没有人能证明出来,直到2023年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:任何大于特定大偶数n的偶数都可以表示为两个殆素数之和的形式,且这两个殆素数只拥有最多9个素因子。(所谓“殆素数”就是素数因子(包括相同的与不同的)的个数不超过某一固定常数的奇整数)

这种方法被记为“9+9”,试着证明最后一步的“1+1”

七、思考题:众所周知,x+y=z的解有无数组,也就是勾股定理的勾股数,都是正整数解,现有一个问题:当n>2时,x的n次方+y的n次方=z的n次方是否有正整数解?

答案是没有。这就是数学界著名的“费马大定理”,试着去证明一下。

出卷人:初二9班龚其然 60号)

初二数学试卷

填空 2 12 1 64的平方根是 的算术平方根是 2 已知分式,当x 2时,分式的值为0 当x 时分式无意义,则ab 3 分式化简后,分子是2x 3y,则分母为。4 等腰三角形两腰上的高相等 的逆命题是这个命题是真假性 5 o是 abc的 b c两角的平分线的交点,od ab交bc于d,oe ac...

初二数学试卷

一 填空 30分每空3分 的平方根是8的立方根是。3 关于中心对称的两图形,对应线段如果不在同一直线上,那么这两条线的位置关系是。边形的内角和是度。15边形的外角和是度。6 已知点a在x轴的上方,在y轴的左侧,且距离x轴3个单位,且距离y轴4个单位,那么a点的坐标是。7 平行四边形abcd中 be平...

初二数学试卷

座位号 嘉峪关市北区联盟初中学校2013 2014学年第一学期期末考试八年级数学试卷。考生注意 1.本试卷共 8 页,总分150分,考试时间120 分钟。2.答案需用蓝色 黑色钢笔或中性笔填写。一 选择题 共10道小题,每小题3分,共30分 1.下列图案中是轴对称图形的是 2.若一个多边形的内角和等...