导数。一、名词解释(21分)
导数:设函数在点的某个领域内有定义,给以改变量,则函数的相应改变量为。如果当时,两个改变量比的极限:
存在,则称这个极限值为函数在点的极限,并称函数在点可导,也称为在点可微或有微商。
平均变化率:称为平均变化率。
导函数:设对于区间(a,b)中的每一点,函数都有导数,那么对应于区间(a,b)中的每一点就有一个导数值,这样由导数值构成的函数,叫做函数的导函数,记作,或,高阶导数:如果函数的一阶导函数仍是可导函数,对其继续求导,得到函数的二阶导函数,依次继续下去,可得到函数的三阶导数、四阶导数…
二阶及二阶以上的导数统称高阶导数。
驻点:使等于零的点称为函数的稳定点或驻点。
极值:设函数在及其邻域内有定义,且在的邻域内恒成立,则称为极大值点,称为极大值。同理可定义极小值。极大值与极小值统称为函数的极值。
二、填空题(5分)
1.导数的物理意义是瞬时速度。
2.导数的几何意义是曲线在一点的切线斜率。
3.导数的第三种解释是变化率。
4.导数是一种特殊的极限,因而它遵循极限运算的法则。
5.可导的函数是连续的,但连续函数不一定可导。
三、回答题(27分)
1.什么是费马定理?
答:设函数在点的某邻域内有定义并且在点处可导,如果对任意的,有(或),那么,
2.什么是罗尔定理?
答:如果函数在闭区间[a,b]上连续,在开区间内(a,b)内可导,并且满足条件,那么至少存在一点,使得
3.什么是拉格朗日中值定理,它的辅助函数甲(1)是怎样构造的?
答:拉格朗日中值定理是这样叙述的:如果函数在闭区间[a,b]上连续,在开区间内(a,b)内可导,那么至少存在一点,使得
辅助函数为:
4.函数的性质有哪些?
答:函数的性质主要有奇偶性、单调性、有界性、周期性。
5.导数的绝对值大小告诉我们什么?它反映在函数曲线上情况又怎样?
答:导数的绝对值告诉我们变化率的大小,因此,我们可以从一个函数的导数情况判断出函数的性态。当绝对值较大时,函数曲线就陡峭;绝对值较小时,函数曲线就平坦一些。
6.什么是极大值(或极小值)?
答:设函数在点的某邻域内有定义,若对任意的,或)
则称为函数的极大值(或极小值),称为函数的一个极大值点(或极小值点)。
7.请举例说明费马定理只给出了极值的必要条件而不是充分条件。
答:函数的导数,是这个函数的稳定点,但不是极值点。所以,函数的极值点一定是稳定点,但稳定点不一定是极值点。
8.最大值与极大值是一回事吗?
答:不是。最大值是指函数在给定区间的全部函数值中最大值,而极值描述的只是在极值点附近的局部变化情况。
在一个闭区间上连续的函数有且只有一个最大值,而极大可能有几个。极大值不一定是最大值。
9.解决最大或最小值问题通常要用哪几个步骤?
答:(1)找出驻点和那些连续但不可导的点来,并计算出这些点的函数值;(2)计算出此区间端点处的函数值;
3)将以上个函数值进行比较,可得到最大值与最小值。
4)如果是应用问题,则需先分析题意,设变量,列出函数关系,在求出唯一驻点,它就是答案。
四、计算题(30分)
1.求函数在点x=3处的导数(用定义做此题)。
解:当x=3时,y=9。当时, 故 因此
所以 2.求函数的导数。
解: 3.求的导数。
解: 4.求的导数。
解: 5.求的导数。
解:令 ,
6.求的导数。
解: 7.求的导数。
解:当时,
当时, 综上所述,
8.求的导数。
解: 9.求的二阶导数。
解: 10.求的n阶导数。解:
五、应用题(17分)
1、气球充气时,半径r以1cm/s的速率增大,设充气过程中气球保持球形,求当半径r=10cm时体积v的速率。(5分)
解: ,当时,答:体积v增加的速率为400cm/s.
2、把长为1的线段分成两段,使得以这两段分别作为长与宽所得的矩形面积最大。(5分)
解:设一边长为x,则另一边长为1-x,矩形面积s=x(1-x)=,令,解得。
答:从中间截断,可得到最大矩形的面积。
3、某工厂需要围建一个面积为512的矩形堆料场,一边可以利用原有的墙壁,其它三边需要砌新的墙壁,问堆料场的长和宽各为多少时,才能使砌墙所用的材料最少?(7分)
解:设宽为米,则长为米,围墙长度为。,令,即,解得 x
舍掉, 512/x
答:当宽为16米,长为32米时,才能使材料最省。
微分。一、名词解释(12分)
微分: 设函数在点处可导,则称为函数在点处的微分,记作,即。
函数的一阶微分形式的不变性:设函数在点处可微,在对应点处可微,则复合函数在点处可微。且。
其中。微分的线性化:借助微分使非线性函数在局部转化为线性函数,使自理问题时达到简单、方便、高效的目的。
二、填空题(16分)
1、微分有双重意义,一是表示一个微小的量,二是表示与求导密切相关的运算。
2、微分学包含两个系统:概念系统和运算系统。
3、导数是逐点定义的,它研究的是函数在一点附近局部性质。
4、微分中值定理建立了函数的局部性质和整体性质的联系,建立了微积分理论联系实际的桥梁。
三、回答题(15分)
1、微分学基本问题是什么?
答:微分学的基本问题是求非均匀变化量的变化率问题。
2、微分学的基本运算是什么?
答:求导运算与微分运算是微分学的基本运算。
3、微分的线性化有什么应用?
答:可进行近似计算等。
四、计算题(40分)
1、求下列函数的微分。
(5分)解:因为。
所以。(5分)
解:因为。所以。
(5分)解:因为。
所以。(5分)
解:因为。所以。
2、半径为8cm的金属球加热以后,其半径伸长30.04cm,问它的体积增大了多少?(10分)
解: cm3、计算近似值。(10分)
解:设。则,五、证明题(17分)
当很小时,。
证明:令,则,证毕。
高等数学 B 1 作业
微积分简史。注意 以下六题自己从书中相应位置的内容去概括,要抓住重点,言简意赅,写满所留的空地。1 论述微分学的早期史。15分 答 见书p216 217 2 简述费马对微分学的贡献。15分 答 见书p217 218 3 简述巴罗对微分的贡献。15分 答 见书p218 220 4 论述积分学的早期史。...
高等数学B作业
多元函数概念。一 选择题 设,则 a b c d 二 填空题 1 若,则 2 5 函数的定义域为。三 计算题。四 讨论题 讨论在定义域上的连续性。解 在整个平面内处处连续。五 证明题 证明不存在。证明 与有关,故不存在。偏导数。一 选择题 函数的二阶混合偏导数为 a b c a和b均正确d 以上答案...
高等数学B作业
行列式。一 选择题。1 下列排列中是偶排列的是。2 下列阶行列式值一定为零的是。主对角线上的元素全为零 三角形行列式主对角线上的有零元素 行列式中零元素多于个行列式中非零元素多于个 二 填空题。1 级排列的逆序数为 2 行列式。三 计算题。1 计算下列行列式。并计算代数余子式组合 解 将其各行加到第...