圆锥曲线常考题型 三

发布 2021-04-30 11:26:28 阅读 3849

题型六:动点轨迹方程:

1、求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围;

2、求轨迹方程的常用方法:

3)代入转移法:转移法求曲线方程时一般有两个动点,一个是主动的,另一个是次动的。

当题目中的条件同时具有以下特征时,一般可以用转移法求其轨迹方程:

某个动点在已知方程的曲线上移动;

另一个动点随的变化而变化;

在变化过程中和满足一定的规律。

例1.动点p是抛物线上任一点,定点为a(0,-1),若,求动点m的轨迹方程。

例2. 已知是以为焦点的双曲线上的动点,求的重心的轨迹方程。

练习.已知,在平面上动点满足,点是点关于直线的对称点,求动点的轨迹方程。

4)参数法:当动点坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程).

例。过点f(1,0)作直线与曲线交于a、b两点,求弦ab的中点m的轨迹方程。

练习.过点作直线交双曲线于、两点,已知。

求点的轨迹方程。

圆锥曲线常考题型 四

解题策略 1 常用方法有配方法 判别式法 导数法 函数单调性等 2 参数方程法 三角代换法 把问题转化为三角函数问题,利用三角函数的有界性 3 不等式法,通过基本不等式求最值 4 数形结合法。解决最值问题一定要分清哪些量为变量,哪些量为常量 解决此类问题要综合应用多种知识,注意问题切入点的突破。例。...

圆锥曲线常考题型 一

题型一 定义的应用。1.圆锥曲线的定义 1 椭圆。2 双曲线。3 抛物线。2.定义的应用。1 寻找符合条件的等量关系。2 等价转换,数形结合。3.定义的适用条件。典型例题。例1.动圆m与圆c1 内切,与圆c2 外切,求圆心m的轨迹方程。例2.方程表示的曲线是。题型二 圆锥曲线焦点位置的判断 首先化成...

圆锥曲线常考题型 二

题型四 圆锥曲线中离心率,渐近线的求法。三者知道任意两个或三个的相等关系式,可求离心率,渐进线的值 三者知道任意两个或三个的不等关系式,可求离心率,渐进线的最值或范围 3.注重数形结合思想不等式解法。典型例题。例1.已知 是双曲线 的两焦点,以线段为边作正三角形,若边的中点在双曲线上,则双曲线的离心...