九年级数学(上)讲学稿(18)
课题:§23.2 中心对称课本
执笔:罗海英审核:李艳、唐晓芳、林艳、唐信时间:2011-10-15
学习目标:理解中心对称的定义,掌握中心对称的性质,并灵活利用其性质来画出已知图形的对称图形。
学习重点:学习难点:掌握中心对称的性质,并灵活利用其性质来画出已知图形的对称图形。
一、知识回顾:
如下图,画出△abc绕点o逆时针旋转180°后的△a′b′c′.并填空:
1.把△abc绕着点o旋转180°后能够和△a′b′c重合”或“不重合”) 即△abca′b′c′(“全等”或“不全等”).
2.分别连接对称点aa′、bb′、cc′.点o**段aa ′上吗?如果在,在什么位置。
你能从中得到什么结论?
二、 **归纳:
把一个图形绕着旋转 ,如果它能够和另一个图形 ,那么就说这两个图形关于这个点对称或 ,这个点就叫这两个图形中的对应点叫做关于中心的 .
例如:上图中△abc与△a′b′c′关于点对称,点a与点a′是关于点o的 .
中心对称的性质:(1)关于中心对称的两个图形是图形;
2)关于中心对称的两个图形,对称点所连线段都经过而且被对称中心 .
三、例题欣赏:
例1 :如图,选择点o为对称中心,画出点a关于点o的对称点a′.
例2:已知线段ab和o点,画出线段ab关于点o的对称线段a′b′.
例3、如图,选择点o为对称中心,画出与△abc关于点o对称的△a′b′c′.
四、 课堂练习:
1.如图,已知等边△abc和点o,画△a′b′c′,使△a′b′c′和△abc关于点o成中心对称.
(第1题第2题)
2.如图画一个与四边形abcd关于点a成中心对称的图形.
3.如图,已知△abc与△a′b′c′中心对称,求出它们的对称中心o.
第3题)五、中考连接第4题)
4.(2011.绍兴)在图中,作出关于点e成中心对称的△a′b′c′.
九年级数学(上)讲学稿(19)
课题:§23.3 中心对称图形课本
执笔:罗海英审核:李艳、唐晓芳、林艳、唐信、 时间:2011-10-16
教学重、难点:
重点:理解中心对称图形的定义及其基本性质。
难点:理解中心对称图形的定义,会判断一些常见的图形是否为中心对称图形。
一、课前准备:
1.中心对称图形定义:如果一个图形绕着某一点旋转 ,能够与另一个图形那么就说这两个图形关于这个点也称中心对称。
这个点叫两个图形中的对应点叫做关于中心的对称点。
2.将下面的图形绕o点旋转180°,你有什么发现?
二、**归纳:
把一个图形绕旋转旋转后的图形能够与互相重合,那么这个图形叫这个点叫对称中心。互相重合的点叫做 .
例如:上图中平行四边形是中心对称图形, 点a对称点是___点 b对称点是__
思考:正三角形边、正五边形、正六边形、……是中心对称图形吗?
是中心对称图形。
三、例题欣赏:
例1:如右图,在直角坐标系中,做出下列已知点关于原点o的对称点,并写出它们的坐标。这些坐标与已知点的坐标有什么关系?
a(-1,2),b(2,1),c(2,-1),d(-1,-1),e(0,3),f(-2,0).
a′( b′( c′( d′( e′( f′(
归纳:点的对称关系;
四、课堂练习:
1.下列各点中哪两个点关于原点o对称?
a(-5,0),b(0,2),c(2,-1),d(2,0),e(0,5),f(-2,1),g(-2,-1).
2.点(-2,1)关于x轴的对称点的坐标为( )
a.(2,1) b.(-2,-1) c.(2,-1) d.(1,-2)
3.点a关于y轴的对称点的坐标是(3,5),则点a的坐标是( )
a.(-3,5) b.(3,-5) c.(3,5) d.(-3,-5)
4.点p(3,-4)关于原点o对称的点的坐标是( )
a.(3,4) b.(-3,-4) c.(3,4) d.(-3,4)
5.下列图形中即是轴对称图形又是中心对称图形的是。
a. 角 b.等边三角形 c.线段 d.平行四边形。
6.下列多边形中,是中心对称图形而不是轴对称图形的是( )
a.平行四边形 b.矩形 c.菱形 d.正方形。
7.在梯形、正三角形、等腰三角形、正方形、线段、正六边形、圆中是旋转对称图形的是 .
五、中考连接:
1.(2011.浙江)下列图形中,中心对称图形有( )
a.4个b.3个 c.2个 d.1个。
2.(2011.重庆)下列图形中,是中心对称图形的是 (
a. b. c. d.
3.(2011.桂林)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( )
4.(2010.哈尔滨)下列图形中,是中心对称图形的是( )
5.(2010宁德)下列四张扑克牌图案,属于中心对称的是( )
九年级数学数学
智康vip诊断测试题。九年级数学。姓名所在学校联系 1 已知,为正数,若二次方程有两个实数根,那么方程的根的情况是 a.有两个不相等的正实数根b 有两个异号的实数根。c 有两个不相等的负实数根d 不一定有实数根。2 如图,王华同学晚上由路灯下的处走到处时,测得影子的长为米,他继续往前走米到达处时,测...
九年级数学练习 九
九年级数学练习 九 2014 11 22 srz 一 选择题 共10小题 1 已知关于的方程,下列说法正确的是。a 当时,方程无解b 当时,方程有一个实数解。c 当时,方程有两个相等的实数解d 当时,方程总有两个不相等的实数解。2 则m与n的大小关系是 ab c d 不能确定 3.一个三角形三边之比...
九年级数学培训 九
1 如图,已知 abc中,d是ab的中点,dc ac,且tana 则sin bcd 2 如图,两条宽度都是1的纸条交叉重叠在一起,且它们的夹角为,则它们重叠部分 图中阴影部分 的面积是。3 小明沿着坡度为1 2的山坡向上走了1000 m,则他升高了米。4 如图,小明发现在教学楼走廊上有一拖把以的倾斜...