课题:课题:2.2提公因式法(1)编号:12
课型:新授班级姓名。
教学目标: (1)经历探索寻找多项式各项的公因式的过程,能确定多项式各项的公因式;
(2)会用提取公因式法进行因式分解
一。【课前练习】:
1、多项式的分解因式的概念:把一个多项式的形式,叫做把这个多项式分解因式。
2、下面由左到右的变形,属于分解因式的是 (
a. (a+3)(a–3) =a2-9b. m2-4=(m+2)(m-2)
c . a2-b2+1=(a+b)(a-b)+1d. 10x2-5x+1=5x(2x-1)+1
二。自主学习,合作交流:(阅读课本47-48回答以下问题)
1、下列各多项式有没有共同的因式?如果有就把它找出来。
1)a c+ b c2)3 x2 +x
3)30 m b2 + 5n b4)3x+6
5)a2 b–2a b2 + ab6)( a–3 )–b ( a–3
导出公因式:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式。
2、说出下列各式的公因式:
1)b2 +n b2)7x2-21x m
3)8 a 3 b2 –12ab 3+ab4)7x 3y2–42x2y 3
5)2(x-y)2+(x–y6)2(x-y)2+6(x–y
3、怎样确定多项式的公因式?
系数:公因式的系数是多项式各项系数的最大公约数;
字母:字母取多项式各项中都含有的相同的字母。
指数:相同字母的指数取各项中最小的一个,即字母最低次幂;
注:多项式各项的公因式可以是单项式,也可以是多项式 。
例: 找 3x2– 6x3 的公因式。
因为系数:最大公约数 3
字母:相同字母指数: x
相同字母指数最低次幂: x2
所以,3x2-6x3 的公因式是3x2
4、提公因式法-分解因式。
如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
例1 把 3x+x3分解因式例2 把 7x2-21x分解因式。
方法步骤:①找出 — 公因式; ②提出 — 公因式,例3把 8 a 3 b2 –12ab 3 c + ab分解因式。 例4 把 -24x3+12x2-28x 分解因式。
注意:1、多项式是几项,提公因式后也剩几项。
2、当多项式的某一项和公因式相同时,提公因式后该项剩余1(不能漏写1)。
3、当多项式第一项系数是负数,通常先提出“-”号,使括号内第一项系数变为正数,注意括号内各项都要变号。
三.【课堂练习】:
1.把多项式中各项的公因式写在横线上:
3)2x2-8x+84)-4x3+16x2-26x
2. 把下列各式分解因式:
1) 25x-52) 3 x3 - 3x2 –9x
3) 8a 2c+ 2b c4) 4a 3b3 + 6 a2 b - 2ab
5) 2x2 –12xy2 +8xy3
四.【深化培优】:
1.先化简,再求值:
已知串联电路的电压u=ir1+ir2+ir3,当r1=12.9,r2=18.5,r3=18.6,i=2.3时,求u的值。
2.已知a+b=-4,ab=2,求多项式4a2b+4ab2-4a-4b的值。
批阅: 中心组长科任:__日期:__
提公因式法第一课时导学案
提公因式法。学习目标 1 了解多项式公因式的意义,初步会用提公因式法分解因式。2 会找一个多项式的公因式,学习过程 一 课前准备。1 计算 1 42m3 6m2 2 2 用简便方法计算 二 新课导学 情景导入 一块场地由三个矩形组成,这些矩形的长分别为34,12 4 宽都是5,求这块场地的面积。用两...
因式分解第一课时提公因式法教案详案
教学目标 1,使学生了解因式分解的概念,以及因式分解与整式乘法的区别联系。2,了解提取公因式的方法,会用提取公因式法分解因式。重点 会用提取公因式法分解因式。难点 如何确定公因式以及提出公因式后的另外一个因式。教学过程 1 问题导入。先回忆一下平方差公式以及完全平方公式。b我们来看一道题。尝试不同的...
第二节提公因式法第一课时
八年级数学 因式分解 提公因式法 教案。主备人 一 教学目标 1.知识与技能 能熟练的利用提公因式法进行因式分解。2.过程与方法 在教学过程中,体会类比的教学思想,逐步形成独立思考 主动探索的好习惯。3.情感态度 价值观 通过现实情境,让学生认识数学的实际应用,提高学生的解题能力。二 教学重点 难点...