2023年高考数学模拟试卷(辽宁)答案。
1. 【答案】b
解析一】因为全集u={0,1,2,3,4,5,6,7,8,9},集合a={0,1,3,5,8},集合b={2,4,5,6,8},所以,所以为。故选b
解析二】 集合为即为在全集u中去掉集合a和集合b中的元素,所剩的元素形成的集合,由此可快速得到答案,选b
点评】本题主要考查集合的交集、补集运算,属于容易题。采用解析二能够更快地得到答案。
2. 【答案】a
解析】,故选a
点评】本题主要考查复数代数形式的运算,属于容易题。复数的运算要做到细心准确。
3. 【答案】b
解析一】由|a+b|=|ab|,平方可得ab=0,所以a⊥b,故选b
解析二】根据向量加法、减法的几何意义可知|a+b|与|ab|分别为以向量a,b为邻边的平行四边形的两条对角线的长,因为|a+b|=|ab|,所以该平行四边形为矩形,所以a⊥b,故选b
点评】本题主要考查平面向量的运算、几何意义以及向量的位置关系,属于容易题。解析一是利用向量的运算来解,解析二是利用了向量运算的几何意义来解。
4. 【答案】c
解析】命题p为全称命题,所以其否定p应是特称命题,又(f(x2) f(x1))(x2x1)≥0否定为(f(x2) f(x1))(x2x1)<0,故选c
点评】本题主要考查含有量词的命题的否定,属于容易题。
5. 【答案】c
解析】此排列可分两步进行,先把三个家庭分别排列,每个家庭有种排法,三个家庭共有种排法;再把三个家庭进行全排列有种排法。因此不同的坐法种数为,答案为c
点评】本题主要考查分步计数原理,以及分析问题、解决问题的能力,属于中档题。
6. 【答案】b
解析】在等差数列中,,答案为b
点评】本题主要考查等差数列的通项公式、性质及其前n项和公式,同时考查运算求解能力,属于中档题。解答时利用等差数列的性质快速又准确。
7. 【答案】a
解析一】故选a
解析二】故选a
点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算求解能力,难度适中。
8. 【答案】d
解析】画出可行域,根据图形可知当x=5,y=15时2x+3y最大,最大值为55,故选d
点评】本题主要考查简单线性规划问题,难度适中。该类题通常可以先作图,找到最优解求出最值,也可以直接求出可行域的顶点坐标,代入目标函数进行验证确定出最值。
9. 【答案】d
解析】根据程序框图可计算得。
由此可知s的值呈周期出现,其周期为4,输出时。
因此输出的值与时相同,故选d
点评】本题主要考查程序框图中的循环结构、数列的周期性以及运算求解能力,属于中档题。此类题目需要通过计算确定出周期(如果数值较少也可直接算出结果),再根据周期确定最后的结果。
10. 【答案】c
解析】设线段ac的长为cm,则线段cb的长为()cm,那么矩形的面积为cm2,由,解得。又,所以该矩形面积小于32cm2的概率为,故选c
点评】本题主要考查函数模型的应用、不等式的解法、几何概型的计算,以及分析问题的能力,属于中档题。
11. 【答案】b
解析】因为当时,f(x)=x3. 所以当,f(x)=f(2x)=(2x)3,当时,g(x)=xcos;当时,g(x)= xcos,注意到函数f(x)、 g(x)都是偶函数,且f(0)= g(0), f(1)= g(1),,作出函数f(x)、 g(x)的大致图象,函数h(x)除了这两个零点之外,分别在区间上各有一个零点,共有6个零点,故选b
点评】本题主要考查函数的奇偶性、对称性、函数的零点,考查转化能力、运算求解能力、推理论证能力以及分类讨论思想、数形结合思想,难度较大。
12. 【答案】c
解析】设,则。
所以所以当时,
同理即,故选c
点评】本题主要考查导数公式,以及利用导数,通过函数的单调性与最值来证明不等式,考查转化思想、推理论证能力、以及运算能力,难度较大。
13. 【答案】38
解析】由三视图可知该几何体为一个长方体在中间挖去了一个等高的圆柱,其中长方体的长、宽、高分别为,圆柱的底面直径为2,所以该几何体的表面积为长方体的表面积加圆柱的侧面积再减去圆柱的底面积,即为。
点评】本题主要考查几何体的三视图、柱体的表面积公式,考查空间想象能力、运算求解能力,属于容易题。本题解决的关键是根据三视图还原出几何体,确定几何体的形状,然后再根据几何体的形状计算出表面积。
14. 【答案】
解析】点评】本题主要考查等比数列的通项公式,转化思想和逻辑推理能力,属于中档题。
15. 【答案】4
解析】因为点p,q的横坐标分别为4, 2,代人抛物线方程得p,q的纵坐标分别为8,2.
由所以过点p,q的抛物线的切线的斜率分别为4, 2,所以过点p,q的抛物线的切线方程分别为联立方程组解得故点a的纵坐标为4
点评】本题主要考查利用导数求切线方程的方法,直线的方程、两条直线的交点的求法,属于中档题。
曲线在切点处的导数即为切线的斜率,从而把点的坐标与直线的斜率联系到一起,这是写出切线方程的关键。
16. 【答案】
解析】因为在正三棱锥abc中,pa,pb,pc两两互相垂直,所以可以把该正三棱锥看作为一个正方体的一部分,(如图所示),此正方体内接于球,正方体的体对角线为球的直径,球心为正方体对角线的中点。
球心到截面abc的距离为球的半径减去正三棱锥abc在面abc上的。
高。已知球的半径为,所以正方体的棱长为2,可求得正三棱锥abc在面abc上的高为,所以球心到截面abc的距离为。
点评】本题主要考查组合体的位置关系、抽象概括能力、空间想象能力、运算求解能力以及转化思想,该题灵活性较强,难度较大。该题若直接利用三棱锥来考虑不宜入手,注意到条件中的垂直关系,把三棱锥转化为正方体来考虑就容易多了。
17. 【答案及解析】
点评】本题主要考查三角形的正弦定理、余弦定理、三角形内角和定理及等差、等比数列的定义,考查转化思想和运算求解能力,属于容易题。第二小题既可以利用正弦定理把边的关系转化为角的关系,也可以利用余弦定理得到边之间的关系,再来求最后的结果。
18. 【答案及解析】
点评】本题以三棱柱为载体主要考查空间中的线面平行的判定,借助空间直角坐标系求平面的法向量的方法,并利用法向量判定平面的垂直关系,考查空间想象能力、推理论证能力、运算求解能力,难度适中。第一小题可以通过线线平行来证明线面平行,也可通过面面平行来证明。
19. 【答案及解析】
点评】本题主要考查统计中的频率分布直方图、独立性检验、离散型随机变量的分布列,期望和方差,考查分析解决问题的能力、运算求解能力,难度适中。准确读取频率分布直方图中的数据是解题的关键。
20. 【答案及解析】
点评】本题主要考查圆的性质、椭圆的定义、标准方程及其几何性质、直线方程求解、直线与椭圆的关系和交轨法在求解轨迹方程组的运用。本题考查综合性较强,运算量较大。在求解点的轨迹方程时,要注意首先写出直线和直线的方程,然后求解。
属于中档题,难度适中。
21. (21)(本小题满分12分)
设,曲线与。
直线在(0,0)点相切。
(ⅰ)求的值。
(ⅱ)证明:当时,。
答案及解析】
点评】本题综合考查导数的概念、几何意义、导数在判断函数单调性与最值中的运用。本题容易忽略函数的定义域,根据条件曲线与直线在(0,0)点相切,求出的值,然后,利用函数的单调性或者均值不等式证明即可。从近几年的高考命题趋势看,此类型题目几乎年年都有涉及,因此,在平时要加强训练。
本题属于中档题。
请考生在第三题中任选一题做答,如果多做,则按所做的第一题记分。做答时用2b铅笔在答题卡上把所选题目对应题号下方的方框涂黑。
点评】本题主要考查圆的基本性质,等弧所对的圆周角相等,同时结合三角形相似这一知识点考查.本题属于选讲部分,涉及到圆的性质的运用,考查的主要思想方法为等量代换法,属于中低档题,难度较小,从这几年的选讲部分命题趋势看,考查圆的基本性质的题目居多,在练习时,要有所侧重.
点评】本题主要考查直线的参数方程和圆的极坐标方程、普通方程与参数方程的互化、极坐标系的组成.本题要注意圆的圆心为半径为,圆的圆心为半径为,从而写出它们的极坐标方程;对于两圆的公共弦,可以先求出其代数形式,然后化成参数形式,也可以直接根据直线的参数形式写出。对于极坐标和参数方程的考查,主要集中在常见曲线的考查上,题目以中低档题为主.
点评】本题主要考查分段函数、不等式的基本性质、绝对值不等式及其运用,考查分类讨论思想在解题中的灵活运用,第(ⅰ)问,要真对的取值情况进行讨论,第(ⅱ)问要真对的正负进行讨论从而用分段函数表示,进而求出k的取值范围。本题属于中档题,难度适中.平时复习中,要切实注意绝对值不等式的性质与其灵活运用。
2023年高考数学模拟试卷 新课标
绝密 启用前。1 已知实数是,的等比中项,则双曲线的离心率为 a b c d 答案 a解析 略。2 设,则关于,的方程所表示的曲线是 a 长轴在轴上的椭圆 b 长轴在轴上的椭圆 c 实轴在轴上的双曲线 d 实轴在轴上的双曲线。答案 d解析 因为,所以 0,0,原方程化为,故其表示实轴在轴上的双曲线。...
2023年高考数学模拟试卷 新课标
1 函数的定义域为 a b c d 2 如果点在以点为焦点的抛物线上,则 abcd 3 命题 命题 则下列命题中为真命题的是 a b c d 4 在 中,则 的面积等于 ab c 或 d 或。5 执行如图所示的程序框图,输出结果是 若,则所有可能的取值为 ab cd 6 已知正方形的四个顶点分别为,...
2023年高考数学模拟试卷 新课标
1 已知全集,集合,则 2 下列命题中,错误的是 a 过平面外一点可以作无数条直线与平面平行。b 与同一个平面所成的角相等的两条直线必平行。c 若直线垂直平面内的两条相交直线,则直线必垂直平面。d 垂直于同一个平面的两条直线平行。3 已知集合,若 是 的充分非必要条件,则的取值范围是 a b c d...