概率论简史

发布 2022-10-11 13:10:28 阅读 2909

概率论同其他数学分支一样,是在一定的社会条件下,通过人类的社会实践和生产活动发展起来的一种智力积累.今日的概率论被广泛应用于各个领域,已成为一棵参天大树,枝多叶茂,硕果累累.正如钟开莱2024年所说:“在过去半个世纪中,概率论从一个较小的、孤立的课题发展为一个与数学许多其它分支相互影响、内容宽广而深入的学科.”概率论发展的每一步都凝结着数学家们的心血,正是一代又一代数学家的辛勤努力才有了概率论的今天.

1 栖凤枝稍尚软弱化龙形状已依稀。

人类认识到随机现象的存在是很早的.从太古时代起,估计各种可能性就一直是人类的一件要事.早在古希腊哲学家就已经注意到必然性与偶然性问题;我国春秋时期也已有可考词语(辞海);即使提到数学家记事日程上的可考记载,也至少可推到中世纪.有史记载15世纪上半叶,就已有数学家在考虑这类问题了.如在意大利数学家帕乔利(年出版的《算术》一书中就有以下问题:两人进行赌博,规定谁先获胜6场谁为胜者.一次,当甲已获胜5场,乙也获胜2场时,比赛因故中断.那么,赌注该如何分配呢?所给答案为将赌注分成7份,按5:

2分给甲乙两人.当卡丹(cardan jerome,1501—1576)看到上述问题时,以为所给分法不妥.他考虑到接下去比赛的几种可能结果,并确定赌注应按10:1来分配(现在看来,其分法也是错误的).卡丹著有《论赌博》一书,其中提出一些概率计算问题.如掷两颗骰子出现的点数和的各种可能性等.此外,卡丹与塔塔利亚(tartaglia niccolo,1500—1557)还考虑了人口统计、保险业等问题.但是他们的研究工作,对数学家来说,赌博味道太浓了一些,以致数学家们对其嗤之以鼻.近代自然科学创始人之一—伽利略(galileo,1564—1642)解决了以下问题:同时投下三颗骰子,点数和为9的情形有6种)和).点数和为10的情形也有6种)和),那么出现点数和为9与10的机会应相同,而经验告知,出现10的机会比出现9的机会要多,原因何在?

伽利略利用列举法得出同时掷三颗骰子出现点数和为9的情形有25种,而出现点数和为10的情形却有27种.可见,已经产生了概率论的某些萌芽.

2024年7月29日,法国骑士梅累向数学神童—帕斯卡(pascal,1623—1662)提出了一个使他苦恼很久的问题:“两个赌徒相约若干局,谁先赢了s局则赢.若一人赢局,另一人赢局,赌博中止,问赌本应怎么分?”帕斯卡对此思考良久,又将其转给业余数学王子—费马(fermat,1601—1665).在数学史上有名的来往信件中,两人取得了一致意见:

在被迫停止的赌博中,应当按每个局中人赌赢的数学期望来分配桌面上的赌注.帕斯卡与费马用各自不同的方法解决这个问题,帕斯卡长于计算,运用数学归纳法,推导出数学内含的规律性,而费马以敏锐的观察力,严格的推理,建立起数学概念.

以为例来说明他们的解法.即谁先胜3局,则可得到全部赌注,在甲胜2局,乙胜1局时,赌局中止了,问怎样分配赌注才算公平合理.

帕斯卡分析认为:甲已胜2局,乙也胜1局,如再赌一局,则或者甲大获全胜,赢得全部赌金,或者乙胜,则甲与乙胜的局数变成相等,甲、乙应平分赌金.把这两种情况平均一下,甲应得赌金的3/4,乙则得赌金的1/4.

费马认为:由甲已胜a局,乙已胜b局,要结束这场赌博最多还需要赌局,在这个例子中,最多还需要玩两局,结果有四种等可能的情况:(甲胜,甲胜),(甲胜,乙胜),(乙胜,甲胜),(乙胜,乙胜).

在前面三种情况下,甲赢得全部赌金,仅第四种情况能使乙获得全部赌金.因此甲有权分得赌金的3/4,而乙应分赌金的1/4.

帕斯卡在他的著作《论算术三角形》中给出了这一问题的通解:令 ,则甲乙两人应得赌金之比为。

费马和帕斯卡虽然没有明确定义概率的概念,但是,他们定义了使某赌徒取胜的机遇,也就是赢的情况数与所有可能情况数的比,这实际上就是概率,所以概率的发展被认为是从帕斯卡和费马开始的.正如对概率论有卓越贡献的法国数学家泊松(poisson,1781—1840)后来所说:“由一位广有交游的人向一位严肃的冉森派所提出的一个关于机会游戏的问题乃是概率演算的起源.”

当荷兰数学家惠更斯(到巴黎的时候,听说帕斯卡与费马在研究概率问题,便也参与进来,并于2024年出版了《论赌博中的计算》一书.书中给出了第一批概率论概念和定理(如加法定理、乘法定理).关于“数学期望”是这样提出的:“在赌局开始之前,对每一个赌徒来说就已有了关于结局的一种“期望”,如果共有种等可能的结果,其中, 种结果使他获赌金为 ,其余结果使他获赌金为 ,则他的期望为 .在概率论的现代表述中,概率是基本概念,数学期望则是第二级的概念,但在历史上,顺序却相反,先有“期望”概念,而古典概型的概率定义,完全可以从期望概念中导出来.因此,可以认为概率论从此诞生了.

2 江山代有人才出各领**数百年。

莱布尼兹(leibniz,1646—1716)于1672—2024年侨居巴黎时读到帕斯卡概率方面的研究成果,深刻地认识到这门“新逻辑学”的重要性,并且进行了认真的研究.

在帕斯卡与费马通信讨论赌博问题的那一年,雅各·伯努利(jacob bernoulli,1654—1705)诞生了.在2024年出版的其遗著《猜度术》中首次提出了后来以“伯努利定理”著称的极限定理:若在一系列独立试验中,事件发生的概率为常数p,那么对 >0以及充分大的试验次数n,有。

其中为次试验中事件出现的次数,伯努利定理刻画了大量经验观测中呈现的稳定性,作为大数定律的最早形式而在概率论发展史上占有重要地位.

概率论简史

概率论发展简史。一 历史背景 世纪,数学获得了巨大的进步。数学家们冲破了古希腊的演绎框架,向自然界和社会生活的多方面汲取灵感,数学领域出现了众多崭新的生长点,而后都发展成完整的数学分支。除了分析学这一大系统之外,概率论就是这一时期 使欧几里得几何相形见绌 的若干重大成就之一。二 概率论的起源 概率论...

概率论概率论X2019答案

华南农业大学期末考试试卷答案。2010 2011学年第 1 学期考试科目 概率论与数理统计 一 填空题 本大题共 5 小题,每小题 3 分,共 15分 1 若,则。2 设随机变量的概率密度为,以表示对的三次独立重复观察中事件出现的次数,则。3 设由来自正态总体容量为9的简单随机样本,得到样本均值,则...

概率论课程概率论教学大纲

课程编号 06603制定单位 统计学院制定人 执笔人 徐慧植审核人 任俊柏。制定 或修订 时间 2012年9月1日。江西财经大学教务处。概率论 课程教学大纲。一 课程总述。本课程大纲是以2010年统计学 金融学专业本科专业人才培养方案为依据编制的。课程名称英文名称课程性质总学时数开课院系编写人课程负...