勾股定理的证明方法

发布 2019-07-20 02:19:20 阅读 9308

勾股定理是初等几何中的一个基本定理。这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王**都愿意**和研究它的证明.下面结合几种图形来进行证明。

一、传说中毕达哥拉斯的证法(图1)

左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。

在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂。

二、赵爽弦图的证法(图2)

第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的直。

角三角形围在外面形成的。因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。

第二种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的。

角三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”。

因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得。

这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

三、美国第20任**茄菲尔德的证法(图3)

这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为。

的等腰直角三角形拼成的。因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。

这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。

勾股定理的十六种证明方法

边作四个全等的直角三角形,则每个直角。三角形的面积等于。把这四个直角三。角形拼成如图所示形状。rt dah rt abe,hda eab.had had 90,eab had 90,abcd是一个边长为c的正方形,它的面积等于c2.ef fg gh he b a hef 90.efgh是一个边长为b...

勾股定理无字证明

勾股定理无字证明勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家 也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为 毕达哥...

正弦定理的证明

方法一 可分为锐角三角形和钝角三角形两种情况 当abc是锐角三角形时,设边ab上的高是cd,根据任意角三角函数的定义,有cd 则。同理可得。从而。思考 是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。方法二 利用向量证明。如图,在abc中,过点作一个单位向量,使。...