shu-—睡。模拟检测溷一ii
数学。则。:。的值为。
设函数咖一詈)(0咖<盯)是奇函数.
i)求 ;ⅱ)求函数一詈,0)图象上。
每点切线斜率的取值范围.
8.(本小题满分12分)
体育课进行篮球投篮达标测试,规定:每位同学有5次。
投篮机会,若投中3次则“达标”;为节省测试时间,同时规定:若投篮不到5次已达标,则停止投篮;若即使后面投篮全。
中,也不能达标(如前3次投中0次),则也停止投篮.同学甲。
投篮命中率为÷,且每次投篮互不影响.
第ⅱ卷(共9o分)
1)求同学甲测试达标的概率.
2)设测试中甲投篮次数记 ,求的分布列及期望。
二、填空题:(本大题共4小题。每小题4分。共16分.将19.本小题满分12分)
答案填在题中的横线上)
如图,长方体中。
3.关于的方程(÷)有负数根,则实数n的,m是ad中点,ⅳ是b c中点.
取值范围为。
4.若多项式 + 口。
nl0贝ⅱn9
5.如图,设p为△ac内一点,且 =.则。
a p的面积与aab的面积之比等于。
1)求证:a。肘、c、四点共面;(2求证:bd上mcn
3)求证:平面a1m平面alb
6.将正整数24分解成两个正整数的乘积有求a 曰与平面a。m所成的角.
四种,又4×6是这四种分解中两数的差最小。
0.(本小题满分12分)
的,我们称4×6为24的最佳分解,当p g是正整数已知等差数列{a 的首项为o,公差为b;等比数列{b 的最佳分解时,我们规定函数f(n卫,例如f(2
的首项为b,公比为口,其中0,b且,下列有关函数f(n的说法正确的是:(把正。
1)求a的值;
2)若对于任意n∈n总存在m∈n使n +确的答案序号都填上).
求6的值;,(下若n是一个质数,则f
1.(本小题满分12分)
若n是一个完全平方数,则f(n
已知函数,()
十oo,b为常数),且方程)一 +
2=0有两个实根为 =3
三、解答题:本大题共6小题。共74分。解答应写出文字(1)求函数,()的解析式;说明,证明过程或演算步骤.
7.(本小题满分l2分)
2)设 >1时,解关于的不等式。
时事热点。马来西亚卫生部长廖中莱201年11r访华。与中方磋商并共同启动燕窝卫生标准的制定进程。新校园201
新课程新学习新**数学。
2.(本小题满分14分)
●■模拟检测疆一i●
解析:基本事件总数为6×6若使方程有实根,则△
在平面直角坐标系中,已知焦距为4的椭圆g:+鲁。
1(口>b>的左、右顶点分别为a、,椭圆c的右焦点为。
一4c≥即b>t
当c:1时当c=2时当c
时,b=当c=4时,b=当c=5时,b=过,作一条垂直于轴的直线与椭圆相交于r、s若线段。
s的长为 .
当c=6时,b=目标事件个数为因此方程 +b
.答案:a1)求椭圆c的方程;
2)设q(£是直线 =9上的点,直线qa、与椭圆分别c交于点 、ⅳ求证:直线mn必过轴上的一定点,并求出此定点的坐标;
解析:依题意可知f (一由pf 的中点在y轴上可知点p的横坐标为3,将 =3代入椭圆方程可得。
3)实际上,第(2)小题的结论可以推广到任意的椭圆、双曲线以及抛物线请你对抛物线写出一个。
.,再由椭圆定义得。
更一般的结论,并加以证明.,解得i。i故ii=
参***。一。
.答案:c选择题。
解析:对于选项a,结论有可能是n在内;对于选项b、
.c8结论都应为平行或相交.
.答案:c.解析:设y=
答案详解:1.答案:d
解析。一 ,则因而。
-i一2dx表示由曲线在eo,上的一段与坐标轴所围成的。
一。图形的面积,即第一象限部分的圆的面积.则』
可令则ⅱ+b不一。
定属于p;ⅱ一b=2一2 不一定属于。
‘1t盯。.答案:d
解析:如图所示,设三个切点分别为:、n
…不一定属于选d.
.答案:b解析:b由于j型。
雩+m是纯虚数,可知12—且m≠0解得。
当m=2时,(争 )z枷。
ll一1当m=一2时,(1
+一lm)枷 =(十l=(一i)。
故选b.3答案:b.
ni=一c,.点是椭圆的右顶点,又cn上轴,点轨迹为直线.10答案:d解析。
在(0,内单调递增,解析:利用数形结合求解,令lnx一:0,得lnx即求函数y=l与y= 的交点个数.
.答案:d可知在(0,上成立,而当 :—
二。解析:b、选项的函数周期为2竹,不合题意,a选项的函数在区间(,盯)上为增函数,不合题意.
.答案:c时,(÷故只需要4+m即m≥一4即可.故。
是q的充分不必要条件.
1.答案:a
新校园201
时事热点。财政部201年11月7日下发通知称.经***批准.财政部等四部委审查,允许海南省免税品。
****在海南省范围内开展经营国家批准的离岛免税品、建设免税店等业务。
_■匿模拟检测懑一i●
数学。角析一1()
)=厂。=(÷了1八丁。
2)的取值为3,4
)=厂。2.答案:a
解析:03一al2一a3=一。
1,了丁万了2)=的分布列。
累力口得。
二、填空题。
3.一了2<。
解:<o所以o<‘从而0<
4×+万8=万107
解得一丁2<。
4.一109解:(1取 d,中点e,连结me、
解:左边的系数为1,易知a。。左边的系数为,,右边的系数为所以一10
。,肘,c,四点共面.
解:过p点作ac与ab的平行线交ab、分别于m、n所以=
需=了16.答案:②③
解析:由最佳分解的定义知,48的最佳分解是6×8故f
故①错误;同样,②正确;若n是一个质数,则1× 是的最佳分解,故f()正确;若是个完。
2)连结bd,则bd是bd 在平面abc内的射影。
全平方数,故n的最佳分解可以表示为n=p故f
)=卫=卫=1④正确。
一。一。
一。d—b一厄’
胁。bd+厶。
三、解答题。
7解:(i为奇函数咖一詈)=0
o<咖< ,了2'i厂。
3)连结a。c由a。b是正方形,知bd
d1上mc,上平面a1m平面a m平面a1b
4)/是a 与平面a m所成的角且等于45。
0.解析。又‘.‘一詈,o‘詈,)
则y ∈一2,4
ⅱ+6口6,ⅱ
8.解:(1同学甲测试达标的概率。
时事热点0 2年11月7日从卫生部获悉.20年起.中国将在广大乡镇、街道、社区推进卫生监督协管。
服务.及时发现违反卫生法律法规的行为,保障广大群众公共卫生安全。
新校园201
可e^’日 ‘断暴墓。
数学。断.蕊断宅。
_—模拟检测溷一_i
>,+口一●㈦+口●●2一●-f
得(20一6x+一180设:测3
十二。一詈o
xz-詈(一1)6一,由0 +可得。
3)=一。一 20
十zu.十zu
--为(1.解:(1将 =3分别代入方程七十0一 +1
若等=为 =1与轴交于(1,点;
4o时,直线删的方程。
一。若m ≠直线删的方程为。()(分)
2)不等式即为 2<
令y=0解得 =1综上所述,直线mn必过轴上的定点(1,
此不等式可化为二<0,等价于(一1)(一。
3)结论:已知抛物线的顶点为0,p为。
直线 =一q(q上一动点,过点p作轴的平行线与抛物线交于点m,直线dp与抛物线交于点n,则直线mn必过定。
当k=2时,不等式为(2一 )(一1)>解集为(1,点(q,
一日。2.㈩依椭圆洲2,故。
筹一。证明:设p(一g,m则 (,椭圆c的方程为等+予=1.
2)设q(9直线qa的方程为y:西m(+代入。
直线dp的方程为y:一。
0,可求得ⅳ(
一。代入 =2得,一2m)
设 。则13等=24西m+3等+3)澈点的坐标为(等,).
同理,直线qb的方程为y: 一3),代入椭圆方程,直线删懈m:墨 22
一 ),令,,0得。
一,即直线删必过定点。
新校园201时事热点o 2年11 ̄是我圉第十二个记者节。
全民记者”时代来临。网络舆情的作用突出.这娶。
求职业记者和**在复杂的信息环境中保持质疑精神.真正傲到深入贴近新闻发生的土壤.发现客观真相。
2023年高考数学模拟试题
2011年高考数学模拟试题精选。1 已知函数 满足,且时,则函数的零点个数是 a 3 b 4 c 5 d 6 解答 b 由 知,最小正周期为2,作出在区间 1,5 内的图象和在内的图象,知它们有4个公共点。2 函数的部分图象如图所示,则等于 a 6 b 5 c 4 d 3 解答 a 令,得,即点a ...
2023年高考数学模拟试题
2010年高考数学模拟试题 文科 及参 一 一 选择题 本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内。1.已知集合m n 则m n 为 a.b.c.2.在映射f的作用下对应为,求 1 2i的原象 a.2 i b.2 i...
2023年高考数学模拟试题
2010年高考数学模拟试题冲锋卷 一 命题报告 本套试卷按照最新考试大纲编写,立足基础知识,知识点覆盖面广 主要考察了集合的运算,函数的奇偶性 单调性 分段函数 函数图像与最值,数列的性质与求和,向量的数量积运算 坐标运算与平移,不等式的解法,三角函数的图像和性质,解析几何中的线性规划问题 对称问题...