数学试题。
满分120分时间:120分钟)
第ⅰ卷(选择题共24分)
一、选择题(本题共8个小题,每小题3分。共24分。在每小题给出的四个选项中,只有一项符合题目要求)
1.的倒数是( )
abcd.
2.下图中几何体的主视图是( )
3.下列图形中,不是轴对称图形的为( )
4.嫦娥四号,是中华人民共和国国家航天局嫦娥工程第二阶段的登月探测器——嫦娥三号的备份星。或预定于2023年年内由长征三号乙运载火箭从西昌卫星发射中心发射。奔向距地球1500000km的深空.用科学记数法表示1500000为。
a.1.5×106b.0.15×107c.1.5×107d.15×106
5.某班数学兴趣小组8名同学的毕业升学体育测试成绩依次为:30,29,28,27,28,29,30,28,这组数据的众数是( )
a.27b.28c.29d.30
6.下列命题中正确的个数是( )
两组对边分别相等的四边形是平行四边形。
对角线互相垂直的四边形是菱形。
对角线相等的四边形是矩形。
对角线相等的矩形是正方形。
a.1个b.2个c.3个d.4个。
7.如图,半圆o的直径ab=10cm,把弓形ad沿直线ad翻折,交直径ab于点c,若ac=6cm,则ad的长为( )
ab. cd.
8. 甲、乙两车从a地将一批物品匀速运往b地,甲出发0.5小时后乙开始出发,结果比甲早1小时到达b地。
如图,线段op、mn分别表示甲、乙两车离a地的距离s(千米)与时间t(小时)的关系,a表示a、b两地间的距离。现有以下4个结论:
甲、乙两车的速度分别为40km/h、60km/h;
甲、乙两地之间的距离a为180km;
点n的坐标为(3,180);
乙车到达b地后以原速度立即返回,甲车到达b地后以90km/h的速度立即匀速返回,才能与乙车同时回到a地。
以上四个结论正确的是。
abcd. ①
第ⅱ卷(非选择题共96分)
二、填空题(本大题共7小题,每小题3分,共21分。请把答案填在题中横线上)
9.分解因式。
10.如果关于x的一元二次方程(c是常数)没有实数根,那么c的取值范围是 .
11.在△abc中,点d、e分别在ab、ac上,∠ade=∠c,如果ad=3,△ade的面积为9,四边形bdec的面积为16,则ac的长为。
12.设,则的值等于。
13.母线长为4,底面圆的直径为2的圆锥的侧面积是。
14.如图,△abc中,∠c=90°,∠bac=30°,将△abc绕点c旋转,使点b的对应点d落在ab上,连接ae,则。
15.如图,分别在正方形的边上,把正方形沿着直线对折,点落在上的点处,连接并延长交于点,若,则的长为 。
三.解答题(本大题共10小题,满分共75分)
16.(本小题满分5分)计算:
17.(本小题满分6分)国家规定“中小学生每天在校体育活动时间不低于1小时”。为此,某市就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生。根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:
a组:t<0.5h b组:0.5h≤t<1h
c组:1h≤t<1.5h d组:t≥1.5h
请根据上述信息解答下列问题:
1)c组的人数是。
2)本次调查数据的中位数落在___组内;
3)若该辖区约有24000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?
18.(本小题满分6分)如图,四边形abcd是矩形,△pbc和△qcd都是等边三角形,且点p在矩形上方,点q在矩形内.
求证:(1)∠pba=∠pcq=30°;
2)pa=pq.
19.(本小题满分6分)罗田某水果店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元**,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.
1)求第一次水果的进价是每千克多少元?
2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?
20.(本题满分6分)某商场为了吸引顾客,设计了一种**活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应**的购物券,可以重新在本商场消费,某顾客刚好消费200元.
1)该顾客至少可得到___元购物券,至多可得到___元购物券;
2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
21.(本题满分9分)如图,一次函数y=ax+b的图象与反比例函数y=的图象相交于a,b两点,与y轴交于点c,与x轴交于点d,点d的坐标为(-2,0),点a的横坐标是2,tan∠cdo=.
1)求点a的坐标;
2)求一次函数和反比例函数的解析式;
3)求△aob的面积.
22.(本小题满分8分)中考英语听力测试期间,需要杜绝考点周围的噪音.如图,点a是某市一中考考点,在位于a考点南偏西15°方向距离125米的c处有一消防队.在听力考试期间,消防队突然接到报警**,告知在位于c点北偏东75°方向的f点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶,试问:消防车是否需要改道行驶?
请说明理由.(取1.732)
23.(本小题满分8分)如图,ab为⊙o的直径,弦cd⊥ab于点m,过点b作be∥cd,交ac的延长线于点e,连结bc.
1)求证:be为⊙o的切线;
2)如果cd=6,tan∠bcd=,求⊙o的直径。
24.(本小题满分9分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图象如图所示:
1)根据图象,直接写出y1、y2关于x的函数图象关系式;
2)若两车之间的距离为s千米,请写出s关于x的函数关系式;
3)甲、乙两地间有a、b两个加油站,相距200千米,若客车进入a加油站时,出租车恰好进入b加油站,求a加油站离甲地的距离.
25.(本小题满分12分)如图1所示,已知直线y1=kx+m与x轴、y轴分别交于点a、c两点,抛物线y2=﹣x2+bx+c经过a、c两点,点b是抛物线与x轴的另一个交点,当时,y2取最大值 .
1)求抛物线和直线的解析式;
2)设点p是直线ac上一点,且s△abp:s△bpc=1:3,求点p的坐标;
3)直线y= x+a与(1)中所求的抛物线交于点m、n,两点,问:
是否存在a的值,使得∠mon=90°?若存在,求出a的值;若不存在,请说明理由.
猜想当∠mon>90°时,a的取值范围.(不写过程,直接写结论)
参考公式:在平面直角坐标系中,若m(x1,y1),n(x2,y2),则m、n两点之间的距离为|mn|=)
2023年九年级中考六月模拟考试。
数学试题参***。
1. a 2. d 3. a 4. a 5. b 6. a 7. a 8. a 11.5 12. 13.4 14.
15. 解:因为点和点关于对称,所以,易证,设,则,16.
17.(1)120,(2)c,(3)达国家规定体育活动时间的人约有14400人.
18.证明:(1)∵四边形abcd是矩形,∠abc=∠bcd=90°.∵pbc和△qcd是等边三角形,∠pbc=∠pcb=∠qcd=60°
∠pba=∠abc-∠pbc=30°
pcd=∠bcd-∠pcb=30°.
∠pcq=∠qcd-∠pcd=30°.
∠pba=∠pcq=30°.
2)∵ab=dc=qc,∠pba=∠pcq,pb=pc,△pab≌△pqc,∴pa=pq.
19. 解:(1)设第一次购买的单价为x元,则第二次的单价为1.1x元,根据题意得:
解得:x=6,经检验,x=6是原方程的解,2)第一次购水果1200÷6=200(千克).
第二次购水果200+20=220(千克).
第一次赚钱为200×(8-6)=400(元).
第二次赚钱为100×(9-6.6)+120×(9×0.5-6×1.1)=-12(元).
所以两次共赚钱400-12=388(元),答:第一次水果的进价为每千克6元,该老板两次卖水果总体上是赚钱了,共赚了388元.
20.解:(1)10,50;
2)解法一(树状图):
从上图可以看出,共有12种等可能结果,其中大于或等于30元共有8种可能结果,因此p(不低于30元)=;
21. 解: (1)过点a作ae垂直x轴于e,因为d(-2,0),e(2,0),所以od=oe=2.
因为在rt△ade中,∠aed=90°,tan∠ade=,因为tan∠cdo=tan∠ade=,od=2,oe=2,所以ae=tan∠ade·de=×4=2,所以a(2,2).
2)因为反比例函数y=过点a(2,2),所以k=4,所以y=.因为一次函数y=ax+b过a(2,2),d(-2,0),所以解得所以y=x+1.
3)因为=x+1,所以x2+2x-8=0,即(x+4)(x-2)=0,所以x1=-4,x2=2,所以b(-4,-1),所以s△aob=s△aod+s△bod=×2×2+×2×1=3.
2019数学中考复习
初三数学辅导 3 1 如图,在平面直角坐标系中,rt oab的顶点a在x轴的正半轴上,顶点b的坐标为 3,点c的坐标为 0 点p为斜边ob上的一动点,则pa pc的最小值为 a b c d 2 2.如图,正方形abcd中,ab 8cm,对角线ac,bd相交于点o,点e,f分别从b,c两点同时出发,以...
2019数学中考趋势分析
纵观历年中考,2012数学中考趋势。安庆市开发区实验学校章蓉。中考是初中阶段的终结性考试,中考命题必须保证符合课程标准的要求,体现义务教育的基础性 普及性和可持续发展性。同时,中考也是各类高中招生的选拔评价性考试,因此,中考命题必须具有必要的难度和区分度。研究近几年的中考数学试题,把握中考命题的方向...
2019数学中考模拟试卷
一 选择题 共12个小题,每小题3分,共36分 1 的倒数的相反数是 a 4 b c d 4 2 我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停 整改32家,每年排放的污水减少了167000吨 将167000用科学记数法表示为 a b c d 3.下列运算正确的是 ab c d.4....