满分:100分时间:100分钟)
一、选择题(每题2分,共16分)
1.下列四个图形中轴对称图形的个数是。
a.1b.2c.3d.4
2.如图,已知ad是△abc的边bc上的高,下列能使△abd≌△acd的条件是。
a.ab=ac b.∠bac=90° c.bd=ac d.∠b=45°
3.实数a,b在数轴上的位置如图所示,若》,则化简的结果为 (
a.2a+bb.-2a+b c.bd.2a-b
4.用四舍五入法按要求对0.05049分别取近似值,其中错误的是。
a.0.1(精确到0.1b.0.05(精确到千分位)
c.0.05(精确到百分位d.0.050(精确到0.001)
5.卞列各式化简结果为无理数的是。
ab.(-1)0 cd.
6.如图,在△abc中,ab=ac=10,bc=8,ad平分∠bac交bc于点d.若点e为ac的中点,连接de,则△cde的周长为。
a.20b.12c.14d.13
7.周一的升旗仪式上,同学们看到匀速上升的旗子,下面能反映其高度与时间关系的大致图像是( )
8.已知两个变量x和y,它们之间的3组对应值如下表所示:
则y与x之间的函数关系式可能是。
a.y=xb.y=2x+1 c.y=x2+x+1 d.
二、填空题(每题2分,共20分)
9.在平面直角坐标系中,点(1,2)位于第___象限.
10.若一个汽车牌在水中的倒影为,则该车牌照号码为___
11.在平面直角坐标系中,点(-3,4)关于y轴对称的点的坐标是___
12.如图,在rt△abc中,∠c=90°,ad平分∠bac,交bc于点d.若cd=4,则点d到ab的距离为___
13.如图,已知△abc是等边三角形,点b,c,d,e在同一直线上.若cg=cd,df=de,则∠e=__
14.一次函数y=-x+1的图像不经过第___象限.
15.已知(2a+1)2+=0,则-a2+b2004=__
16.在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是___cm2.
17.如图,已知函数y=x-2和y=-2x+1的图像交于点p,根据图像可得方程组的解是___
18.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用了45min,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60km/h,两车的距离y(km)与货车行驶的时间x(h)之间的函数图像如图所示.现有以下4个结论:
快递车从甲地到乙地的速度为100km/h;②甲、乙两地之间的距离为120km;③图中点b的坐标为(3,75);④快递车从乙地返回时的速度为90km/h.其中正确的是___填序号)
三、解答题(共64分)
19.(本题6分)计算下列各题.
20.(本题5分)如图,在△abc中,∠bac的平分线与bc的垂直平分线pq相交于点p,过点p分别作pn⊥lab,pm⊥ac,垂足分别为点n,m.求证:bn=cm.
21.(本题6分)如图,已知一架竹梯ab斜靠在墙角mon处,竹梯ab=13m,梯子底端离墙角的距离b0=5m.
(1)求这个梯子顶端a距地面有多高;
(2)如果梯子的顶端a下滑4m到点c,那么梯子的底部b在水平方向上滑动的距离bd=4m吗?为什么?
22.(本题5分)如图所示是一个正比例函数与一个一次函数的图像,它们交于点a(4,3),一次函数的图像与y轴交于点b,且oa=ob,求这两个函数的解析式.
23.(本题6分)如图,在四边形abcd中,ad∥bc,e是ab的中点,连接de并延长交cb的延长线于点f,点g在边bc上,且么gdf=∠adf.
(1)求证:△ade≌△bfe;
2)连接eg,判断eg与df的位置关系,并说明理由.
24.(本题5分)小明根据某个一次函数的关系式填写了下面这张表.
其中有一格不慎被墨迹遮住了,想想看,该空格里原来填的数是多少?说明你的理由.
25.(本题8分)一农民带上若千千克自产的土豆进城**,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价**,售出土豆的千克数与他手中持有的钱数(含备用零钱)韵关系如图所示,结合图像回答下列问题:
(1)农民自带的零钱是多少?
(2)试求降价前y与x之间的函数关系式;
(3)由表达式你能求出降价前每千克土豆的**是多少吗?
(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
26.(本题9分)已知点p是直角三角形abc斜边ab上一动点(不与a、b重合),分别过点a,b向直线cp作垂线,垂足分别为点e,f,q为斜边ab的中点.
1)如图1,当点p与点q重合时,ae与bf的位置关系是___qe与qf的数量关系是___
(2)如图2,当点p**段ab上不与点q重合时,试判断qe与qf的数量关系,并给予证明;
3)如图3,当点p**段ba(或ab)的延长线上时,(2)中的结论是否成立?请画出图形并给予证明.
27.(本题9分)在社会主义新农村建设电,菜乡镇决定对a,b两材之间的公路进行改造,并由甲工程队从a村向b村方向修筑,乙工程队从b村向a村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工,乙工程队施工几天后因另有任务提前离开,余下的任务由甲工队单独完成,直到公路修通.下图是甲、乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数关系图像,请根据图像所提供的信息解答下列问题:
(1)乙工程队每天修公路多少米?
(2)分别求、出甲、乙两工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式.
(3)若该工程由甲、乙两工程队一直合作施工,需几天完成?
八年级秋学期期末数学模拟试卷(1)
参***。一、选择题。
二、填空题。
9.一 11.(3,4) 12.4 13.15° 14.三 15. 16.49 17.
三、解答题。
19.(1)- 2)原式=1
20.略。21.(1)12m (2)4m
22.y=2x-5
23.(1)略 (2)eg⊥df
25.(1)5元 (2)y=0.5x+5 (3)0.5元/千克 (4)45千克。
26.(1)ae//bf,qe=qf (2)qe=qf. (3)(2)中结论仍然成立.
27.(1)120米 (2)y甲=60x (3)9天完成。
八年级上期末数学模拟试卷1 150分
2015 2016八年级上期末数学模拟试卷1 150分 姓名成绩 亲爱的同学 祝贺你即将完成了一个学期的学习,现在是展示你的学习成果之时,祝你成功!一 单项选择题 每小题4分,共40分 1 在,0,中,无理数的个数有 2个3个4个5个。2.位于坐标平面上第四象限的点是。a 0,4b 3,0c 4,3...
八年级上期末数学模拟试题
一 选择题 本大题共10小题,每小题3分,共30分。每小题给出4个选项,其中只有一个是正确的,请将正确答案填在答题表内相应的题号下,否则不给分 1 以下列各组数为边长,不能构成直角三角形的是 a 32,42,52 b 5,12,13 c 8,15,17 d 2 在下列各数 3.14,0.101001...
八年级 下 期末数学模拟试卷
八年级 下 期末数学基础测试。一 选择题 每题3分,共48分 1 若分式的值为0,则x的值是 2 函数中,自变量x的取值范围是 3 化简的结果为 4 把16个数据分成3组,若第一组4个数的平均数是18,第二组5个数的平均数是14,第三组7个数的平均数是20,那么这16个数的平均数是 5 在平面直角坐...