人教版八年级下册数学勾股定理逆定理说课稿

发布 2022-12-26 18:54:28 阅读 5224

勾股定理逆定理说课稿。

原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!

古之学者必严其师,师严然后道尊。欧阳修。

杭信一中。何逸冬。

一、知识背景。

在知识体系上,学生已经学习了勾股定理,经历了勾股定理的**的过程,积累了相关的数学活动经验,这就具备了勾股定理逆定理的**条件,通过勾股定理逆定理的**,对培养学生的分析思维能力,发展推理能力大有裨益,其中蕴涵着类比、转化,从特殊到一般的思想方法,对学生的可持续发展更有不可低估的作用,我所简述的是第一课时的内容。

二、灵师不挂怀,冒涉道转延。——韩愈《送灵师》

教学目标。灵师不挂怀,冒涉道转延。——韩愈《送灵师》

教学目标既是教学的出发点,也是归宿,或者说:它是教学的灵魂,支配着教学过程,并规定着教与学的方向,灵师不挂怀,冒涉道转延。——韩愈《送灵师》

教学目标的制定和落实是实施课堂教学的关键。我认为一个好的灵师不挂怀,冒涉道转延。——韩愈《送灵师》

教学目标应具备三个基本要素;行为主体、行为动词、表现程度。具体的说行为主体必须是学生而不是教师。第。

二、目标的制定主要是为了后续评价行为,因此行为动词尽可能要清晰可把握而不能含糊其词,否则无法确定教学的正确方向,教学过程的可操作性不强。第。

三、表现程度是用以评价学生的学习表现或学习效果所达到的程度,基于以上理念参考《数学课程标准》制定灵师不挂怀,冒涉道转延。——韩愈《送灵师》

教学目标:1、知识与技能:理解勾股定理逆定理的证明方法,掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形。

2、数学思考:通过勾股定理的逆定理的探索,经历知识发生、发展形成的过程,体会数形结合的思想方法。

3、解决问题:体会数形结合方法在问题解决中的作用,并能利用勾股定理的逆定理解决相关问题。

4、情感态度:通过一系列的**性问题,渗透与人交流合作的意识,感受定理与逆定理之间和谐及辩证统一的关系。

三、教学重点,难点。

重点:探索勾股定理逆定理和运用。

难点:勾股定理的逆定理的证明。

数学课程标准》中提出:要让学生经历知识发生发展的全过程。依据此理念,我重点确定为:

探索勾股定理的逆定理和运用。探索勾股定理的逆定理关键在于转化三角形为全等,如何根据需要造全等三角形,这需要学生思维有极强的跳跃性,对学生是一个挑战,要有极强的创新精神,所以将本节课难点确定为:勾股定理的逆定理的证明。

四、教学理念。

本节课以数学活动为载体,组织教学,以学生实践活动为主体,沟通活动单元、数学思想、思维方式,使不同的学生在数学活动中均得到发展,**活动应围绕四个单元活动展开:活动1:情景设疑,引出课题。

活动2:实践操作、大胆猜想。活动3:

推理验证,入剖析。活动4:反思应用,创新升华。

在教学活动单元设计中,强调教学方法的多样性以及教学模式、活动单元的融合,我主要采用以下几种教法。1.分层导学法,2.

情景教学法。3.启发教学法。

活动中给学生提供多种器官共用的机会,突出数学中活动和活动中数学。学生主要采用小组合作的学习方式,让他们遵循问题情景---观察猜想---**验证---解释应用的主线进行学习。关注他们在活动中的体感受,即掌握必须的知识与技能,又获得方法和能力,更在活动中不断成长,体现新课程发展的三维目标要。

五、学流程。

一)创设问题情境,引入新课:

在这一环节中,我设计了这样一情境,多**动画展示,米老鼠来到了数学王国里的三角形城堡,要求只利用一根绳子,构造一个直角三角形,方可入城,这可难坏了米老鼠,你能帮它想办法吗?**大多数同学会无从下手,样引出课题。只有学习勾股定理的逆定理后,大家都能帮助米老鼠进入城堡,我认为:

“大疑而大进这样做,充分调动学习容,激发求知欲望,动漫演示,又有了很强的趣味性,做到课之初,趣已生,疑已质。

二)实践猜想。

本环节要围绕以下几个活动展开:

1、算一算:求以线段a ,b为直角边的直角三角形的斜边c长。

1a=3 b=4 2a=5 b=12 3a=2.5 b=6 4a=6 b=82、一猜,以下列线段长为三边的三角形形状。

13cm 4cm 5cm 25cm 12cm 13cm32.5cm 6cm 6.5cm 46cm 8cm 10cm3、摆一摆利用方便筷来操作问题2,利用量角器来度量,验证问题2的发现。

4、用恰当的语言叙述你的结论。

在算一算中学生复习了勾股定理,猜一猜和摆一摆中学生小组合作动手实践,在问题1的基础上做出合理的推测和猜想,这样分层递进找到了学生思维的最近发展区,面向不同层次的每一名学生,每一名学生都有参与数学活动的机会,最后运用恰当的语言表述,得到了勾股定理的逆定理。在整个过程的活动中,教师给学生充分的时间和空间,教师以平等的身份参与小组活动中,倾听意见,帮助指导学生的实践活动。学生的摆一摆的过程利用实物投影仪展示,在活动中教师关注;1)学生的参与意识与动手能力。

2)是否清楚三角形三边长度的平方关系是因,直角三角形是果。既先有数,后有形。3)数形结合的思想方法及归纳能力。

三)推理证明。

八年级正是学生由实验几何向推理几何过渡的重要时期,多数学生难以由直观到抽象这一思维的飞跃,而勾股定理的逆定理的证明又不同于以往的几何图形的证明,需要构造直角三角形才能完成,而构造直角三角形就成为解决问题的关键,直接抛给学生证明,无疑会石沉大海,所以,我采用分层导进的方法,以求一石激起千层浪。

1.三边长度为3cm,4cm,5cm的三角形与以3cm,4cm为直角边的直角三角形之间有什么关系?你是怎样得到的?请简要说明理由?

2.△abc三边长a,b,c满足a2+b2=c2与a,b为直角三角形之间有何关系?试说明理由?

为了较好完成教师的诱导,教师要给学生独立思考的时间,要给学生在组内交流个别意见的时间,教师要深入小组指导与帮助,并利用实物投影仪展示小组成果,取得阶段性成果再**问题2.这样由特殊到一般,凸显了构造直角三角形这一解决问题的关键,让他们在不断的**过程中,亲自体验参与发现创造的愉悦,有效的突破了难点。培养良好的数学学习习惯对学生的可持续发展是非常重要的,归纳完定理后,与学生一起分析定理的题设与结论,得出解题中的书写格式。

四)引例解析:通过引例的解决,巩固定理,这是个开命题,能更好地体现不同的解题策略。教师介绍古埃及和我国古代大禹治水都是利用这种方法确定直角的。

让学生感受勾股定理丰富的文化内涵,体会人文精神,激发学好数学为国争光的思想。

五)分层训练,能力升级,以闯关的形式进行,深化学习内容遵循巩固和发展相结合的原则,兼顾不同层次的学生,满足多样化学习的需要。最后归纳反思。启发学生交流知识,能力情感的收获与体验。

在有针对性、有层次布置作业。

六、设计说明。

本节课立足于创新和学生的可持续发展,把教学内容分解为一系列富有**性的问题。让学生在解决问题的过程总共经历知识的发生、发展和形成的过程,把知识的发现权交给学生,让他们在获得知识的过程中体会与人合作的重要,体验成功的喜悦,真正体现学生是学习的主人,教师只是参与者、合作者、引导者。

素材积累】1、走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠叠地挤摘水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。荷叶上滚动着几颗水珠,真像一粒粒珍珠,亮晶希望对您有帮助,谢谢。

晶的。它们有时聚成一颗大水珠,骨碌一下滑进水里,真像一个顽皮的孩子!

2、摘有欢声笑语的校园里,满地都是雪,像一块大地毯。房檐上挂满了冰凌,一根儿一根儿像水晶一样,真美啊!我们一个一个小脚印踩摘大地毯上,像画上了美丽的图画,踩一步,吱吱声旧出来了,原来是雪摘告我们:

和你们一起玩儿我感到真开心,是你们把我们这一片寂静变得热闹起来。对了,还有树。树上挂满了树挂,有的树枝被压弯了腰,真是忽如一夜春风来,千树万树梨花开。

真好看呀!

年,文野31岁那年,买房后第二年,完成了人生中最重要的一次转变。这一年,他摘心里对自己的定位,从穷人变成了有钱人。一些人哪怕有钱了,心里也永远甩不脱穷的影子。

月19日下战书,草埠湖镇核心学校组织全镇小学老师收看了江苏省泰安市洋思中学校长秦培元摘宜昌所作的教训呈文录象。秦校长的讲演时光长达两个多小时,题为《打造高效课堂。

实现减负增效。

全面提高学生素质》。

人教版八年级下册数学17 2勾股定理的逆定理 第一课时

17.2勾股定理的逆定理 第一课时 教学目标 1.理解勾股定理的逆定理,经历 实验测量 猜想 论证 的定理 过程,体会 构造法 证明数学命题的基本思路。2.了解逆命题的概念,并了解原命题为真命题,它的逆命题不一定为真命题。教学重难点。重点 勾股定理逆定理的内容及应用。难点 体会构造法证明数学命题思路...

八年级下册数学《勾股定理》勾股定理的认识知识点整理

有疑问的题目请发在 51加速度学习网 上,让我们来为你解答。加速度学习网整理。一 本节学习指导。勾股定理是最常用定理之一,广泛的应用于各种几何计算。同学们一定要会运用,掌握好本节的基本知识即可,然后做适当的练习,在下一章学习的四边形中很多证明就需要用到勾股定理。二 知识要点。1 勾股定理 直角三角形...

人教版八年级下册数学勾股定理导学案

课题 18.1 勾股定理 4 教学目标1 会用勾股定理解决较综合的问题。2 树立数形结合的思想。重难点1 重点 勾股定理的综合应用。2 难点 勾股定理的综合应用。一 前置学习。如图,水池中离岸边d点1.5米的c处,直立长着一根芦苇,出水部分bc的长是0.5米,把芦苇拉到岸边,它的顶端b恰好落到d点,...