八年级数学几何证明作图题

发布 2022-12-21 07:29:28 阅读 8193

1、如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)

1)画出格点△abc(顶点均在格点上)关于直线de对称的△a1b1c1;(3分)

2)在de上画出点p,使[+pc', altimg': w': none, 'h': none}]最小;(2分)

3)在de上画出点q,使最小。(2分)

2、贵港市**计划修建一处公共服务设施,使它到三所公寓a、b、c 的距离相等。

1)若三所公寓a、b、c的位置如图所示,请你在图中确定这处公共服务设施(用点p表示)的位置(尺规作图,保留作图痕迹,不写作法);

2)若∠bac=56,则∠bpc

3、已知,如图,角的两边上的两点m、n,求作:点p,使点p到oa、ob的距离相等,且pm=pn(保留作图痕迹)

4、如图,直线ab和cd是两条交叉的马路,e、f两点是两座乡镇,现要在∠bod的区域内建一农贸市场,使它到两条马路的距离相等,且到两乡镇的距离也相等,请你利用尺规作图找出此点。(保留作图痕迹,不要求写作法)

5、(1)请画出关于轴对称的[''altimg': w': none, 'h': none}]

其中[',altimg': w': none, 'h': none}]分别是的对应点,不写画法);

2)直接写出[',altimg': w': none, 'h': none}]三点的坐标:

6、某居民小区搞绿化,要在一块长方形空地上建花坛,要求设计的图案由等腰三角形和正方形组成(个数不限),并且使整个长方形场地成轴对称图形,你有好的设计方案吗?请在如图的长方形中画出你的设计方案。

7、已知:△abc为等边三角形,d为ab上任意一点,连结bd.

1)在bd左下方,以bd为一边作等边三角形bde(尺规作图,保留作图痕迹,不写作法)

2)连结ae,求证:cd=ae

8、如图:a、b是两个蓄水池,都在河流mn的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到a、b两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点(保留作图痕迹)

如图,点d,e分别在等边△abc的边bc,ab上,且ae=bd,连接ad,ce交于点f,过点b作bq∥ce交ad延长线于点q.

1)求∠afe的度数;

2)求证:af=bq.

如图①,在△abc中,若ab=10,ac=6,求bc边上的中线ad的取值范围。

解决此问题可以用如下方法:延长ad到点e使de=ad,再连接be(或将△acd绕着点d逆时针旋转180得到△ebd),把ab、ac,2ad集中在△abe中,利用三角形三边的关系即可判断。

中线ad的取值范围是___

2)问题解决:

如图②,在△abc中,d是bc边上的中点,de⊥df于点d,de交ab于点e,df交ac于点f,连接ef,求证:be+cf>ef;

3)问题拓展:

如图③,在四边形abcd中,∠b+∠d=180,cb=cd,∠bcd=140,以为顶点作一个70角,角的两边分别交ab,ad于两点,连接ef,探索线段be,df,ef之间的数量关系,并加以证明。

八年级数学几何证明

11.3 什么是几何证明 导学案 2 主备 孙美丽审核 高建秀。课本内容 p123 125 例2 课前准备 直尺 三角板。学习目标 1.会写出一个命题的逆命题。2.会识别两个互逆命题。3.了解逆命题 逆定理的概念。一 自主预习课本p123 124内容,独立完成课后练习1.2.3.后与小组同学交流 课...

人教版八年级数学下册几何证明题

人教,版,八年级,数学,下册,几何,证明,题,人教,人教版八年级数学下册几何证明题。1.已知 如图,在平行四边形abcd中,e f是对角线ac上的两点,且ae cf.2.18分 已知 如图,d是 abc的bc边上的中点,de ac,df ab,垂足分别是e f,且bf ce.求证 1 abc是等腰三...

八年级数学如做几何证明题

初二数学导学案 2 学生 教学目标 几何专题及期中复习。教学重点 全等三角形与轴对称的单元知识综合应用。教学难点 复杂证明题的分析与书写。知识网络和知识点 如何做几何证明题。知识精读 1.几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型 一是平面图形的...