人教版九年级数学下《第27章相似》专项训练含答案

发布 2022-12-07 12:49:28 阅读 5369

第27章相似专项训练。

专训1 证比例式或等积式的技巧。

名师点金:证比例式或等积式,若所遇问题中无平行线或相似三角形,则需构造平行线或相似三角形,得到成比例线段;若比例式或等积式中的线段分布在两个三角形或不在两个三角形中,可尝试证这两个三角形相似或先将它们转化到两个三角形中再证两三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.

构造平行线法。

1.如图,在△abc中,d为ab的中点,df交ac于点e,交bc的延长线于点f,求证:ae·cf=bf·ec.

第1题)2.如图,已知△abc的边ab上有一点d,边bc的延长线上有一点e,且ad=ce,de交ac于点f,试证明:ab·df=bc·ef.

第2题)三点找三角形相似法。

3.如图,在abcd中,e是ab延长线上的一点,de交bc于f.

求证:=.第3题)

4.如图,在△abc中,∠bac=90°,m为bc的中点,dm⊥bc交ca的延长线于d,交ab于e.

求证:am2=md·me.

第4题)构造相似三角形法。

5.如图,在等边三角形abc中,点p是bc边上任意一点,ap的垂直平分线分别交ab,ac于点m,n.

求证:bp·cp=bm·cn.

第5题)等比过渡法。

6.如图,在△abc中,ab=ac,de∥bc,点f在边ac上,df与be相交于点g,且∠edf=∠abe.

求证:(1)△def∽△bde;

2)dg·df=db·ef.

第6题)7.如图,ce是rt△abc斜边上的高,在ec的延长线上任取一点p,连接ap,作bg⊥ap于点g,交ce于点d.

求证:ce2=de·pe.

第7题)两次相似法。

8.如图,在rt△abc中,ad是斜边bc上的高,∠abc的平分线be交ac于e,交ad于f.

求证:=.第8题)

9.如图,在abcd中,am⊥bc,an⊥cd,垂足分别为m,n.求证:

1)△amb∽△and;

第9题)等积代换法。

10.如图,在△abc中,ad⊥bc于d,de⊥ab于e,df⊥ac于f.

求证:=.第10题)

等线段代换法。

11.如图,等腰△abc中,ab=ac,ad⊥bc于点d,点p是ad上一点,cf∥ab,延长bp交ac于点e,交cf于点f,求证:bp2=pe·pf.

第11题)12.已知:如图,ad平分∠bac,ad的垂直平分线ep交bc的延长线于点p.

求证:pd2=pb·pc.

第12题)专训2 巧用“基本图形”探索相似条件。

名师点金:几何图形大多数由基本图形复合而成,因此熟悉三角形相似的基本图形,有助于快速、准确地识别相似三角形,从而顺利找到解题思路和方法.相似三角形的四类结构图:

1.平行线型.

2.相交线型.

3.子母型.

4.旋转型.

平行线型。1.如图,在△abc中,be平分∠abc交ac于点e,过点e作ed∥bc交ab于点d.

1)求证:ae·bc=bd·ac;

2)如果s△ade=3,s△bde=2,de=6,求bc的长.

第1题)相交线型。

2.如图,点d,e分别为△abc的边ac,ab上的点,bd,ce交于点o,且=,试问△ade与△abc相似吗?请说明理由.

第2题)子母型。

3.如图,在△abc中,∠bac=90°,ad⊥bc于点d,e为ac的中点,ed的延长线交ab的延长线于点f.求证:=.

第3题)旋转型。

4.如图,已知∠dab=∠eac,∠ade=∠abc.

求证:(1)△ade∽△abc;

第4题)专训3 利用相似三角形巧证线段的数量和位置关系。

名师点金:判断两线段之间的数量和位置关系是几何中的基本题型之一.由角的关系推出“平行或垂直”是判断位置关系的常用方法,由相似三角形推出“相等”是判断数量关系的常用方法.

证明两线段的数量关系。

证明两线段的相等关系。

1.如图,已知在△abc中,de∥bc,be与cd交于点o,直线ao与bc边交于点m,与de交于点n.

求证:bm=mc.

第1题)2.如图,一直线和△abc的边ab,ac分别交于点d,e,和bc的延长线交于点f,且ae ce=bf cf.

求证:ad=db.

第2题)证明两线段的倍分关系。

3.如图,在△abc中,bd⊥ac于点d,ce⊥ab于点e,∠a=60°,求证:de=bc.

第3题)4.如图,am为△abc的角平分线,d为ab的中点,ce∥ab,ce交dm的延长线于e.

求证:ac=2ce.

第4题)证明两线段的位置关系。

证明两线段平行。

5.如图,已知点d为等腰直角三角形abc的斜边ab上一点,连接cd,de⊥cd,de=cd,连接ce,ae.求证:ae∥bc.

第5题)6.在△abc中,d,e,f分别为bc,ab,ac上的点,ef∥bc,df∥ab,连接ce和ad,分别交df,ef于点n,m.

1)如图①,若e为ab的中点,图中与mn平行的直线有哪几条?请证明你的结论;

2)如图②,若e不为ab的中点,写出与mn平行的直线,并证明.

第6题)证明两线垂直。

7.如图,在△abc中,d是ab上一点,且ac2=ab·ad,bc2=ba·bd,求证:cd⊥ab.

第7题)8.如图,已知矩形abcd,ad=ab,点e,f把ab三等分,df交ac于点g,求证:eg⊥df.

第8题)专训4 相似三角形与函数的综合应用。

名师点金:解涉及相似三角形与函数的综合题时,由于这类题的综合性强,是中考压轴题重点命题形式之一,因此解题时常结合方程思想、分类讨论思想进行解答.

相似三角形与一次函数。

1.如图,在平面直角坐标系xoy中,直线y=-x+3与x轴交于点c,与直线ad交于点a,点d的坐标为(0,1).

1)求直线ad的解析式;

2)直线ad与x轴交于点b,若点e是直线ad上一动点(不与点b重合),当△bod与△bce相似时,求点e的坐标.

第1题)相似三角形与二次函数。

2.如图,直线y=-x+3交x轴于点a,交y轴于点b,抛物线y=ax2+bx+c经过a,b,c(1,0)三点.

1)求抛物线对应的函数解析式;

2)若点d的坐标为(-1,0),在直线y=-x+3上有一点p,使△abo与△adp相似,求出点p的坐标.

第2题)3.如图,直线y=2x+2与x轴交于点a,与y轴交于点b,把△aob沿y轴翻折,点a落到点c,过点b的抛物线y=-x2+bx+c与直线bc交于点d(3,-4).

1)求直线bd和抛物线对应的函数解析式;

2)在第一象限内的抛物线上,是否存在一点m,作mn垂直于x轴,垂足为点n,使得以m,o,n为顶点的三角形与△boc相似?若存在,求出点m的坐标;若不存在,请说明理由.

第3题)相似三角形与反比例函数。

4.如图,矩形oabc的顶点a,c分别在x轴和y轴上,点b的坐标为(2,3),双曲线y=(x>0)经过bc的中点d,且与ab交于点e,连接de.

1)求k的值及点e的坐标;

2)若点f是oc边上一点,且△fbc∽△deb,求直线fb对应的函数解析式.

第4题)专训5 全章热门考点整合应用。

名师点金:本章主要内容为:平行线分线段成比例,相似三角形的判定及性质,位似图形及其画法等,涉及考点、考法较多,是中考的高频考点.其主要考点可概括为:

3个概念、2个性质、1个判定、2个应用、1个作图、1个技巧.

3个概念。成比例线段。

1.下列各组线段,是成比例线段的是( )

a.3 cm,6 cm,7 cm,9 cm

b.2 cm,5 cm,0.6 dm,8 cm

c.3 cm,9 cm,1.8 dm,6 cm

d.1 cm,2 cm,3 cm,4 cm

2.有一块三角形的草地,它的一条边长为25 m,在图纸上,这条边的长为5 cm,其他两条边的长都为4 cm,则其他两边的实际长度都是___m.

相似多边形。

3.如图,已知∠1′=∠1,∠2′=∠2,∠3′=∠3,∠4′=∠4,∠d′=∠d,试判断四边形a′b′c′d′与四边形abcd是否相似,并说明理由.

第3题)位似图形。

4.如图,在△abc中,a,b两个顶点在x轴的上方,点c的坐标是(-1,0).以点c为位似中心,在x轴的下方作△abc的位似图形,并把△abc的边放大到原来的2倍,记所得的像是△a′b′c.设点b的对应点b′的坐标是(a,b),求点b的坐标.

第4题)2个性质。

平行线分线段成比例的性质。

5.如图,在rt△abc中,∠a=90°,ab=8,ac=6.若动点d从点b出发,沿线段ba运动到点a为止,运动速度为每秒2个单位长度.过点d作de∥bc交ac于点e,设动点d运动的时间为x秒,ae的长为y.

1)求出y关于x的函数解析式,并写出自变量x的取值范围;

2)当x为何值时,△bde的面积有最大值,最大值为多少?

第5题)相似三角形的性质。

6.如图,已知d是bc边上的中点,且ad=ac,de⊥bc,de与ba相交于点e,ec与ad相交于点f.

1)求证:△abc∽△fcd;

2)若s△fcd=5,bc=10,求de的长.

第6题)1个判定——相似三角形的判定。

7.如图,△acb为等腰直角三角形,点d为斜边ab上一点,连接cd,de⊥cd,de=cd,连接ae,过c作co⊥ab于o.求证:△ace∽△ocd.

第7题)8.如图,在⊙o的内接△abc中,∠acb=90°,ac=2bc,过点c作ab的垂线l交⊙o于另一点d,垂足为点e.设p是上异于点a,c的一个动点,射线ap交l于点f,连接pc与pd,pd交ab于点g.

1)求证:△pac∽△pdf;

2)若ab=5,=,求pd的长.

第8题)2个应用。

测高的应用。

9.如图,在离某建筑物ce 4 m处有一棵树ab,在某时刻,1.2 m的竹竿fg垂直地面放置,影子gh长为2 m,此时树的影子有一部分落在地面上,还有一部分落在建筑物的墙上,墙上的影子cd高为2 m,那么这棵树的高度是多少?

第9题)测宽的应用。

10.如图,一条小河的两岸有一段是平行的,在河的一岸每隔6 m有一棵树,在河的对岸每隔60 m有一根电线杆,在有树的一岸离岸边30 m处可看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河的宽度.

人教版九年级数学下册第27章相似章末复习 导学案

章末复习。一 诱导复习。1.导入课题。通过对本章的学习,你学习了哪些知识?它们之间有何关联?重点是什么?如何运用这些知识解决问题呢?板书课题 2.复习目标。1 疏通本章知识,弄清知识脉络。2 进一步熟悉相似三角形的判定及其性质,并能运用这些判定和性质解决一些相应的问题。3 知道什么是位似,能利用位似...

人教版九年级数学下册第27章相似章末复习 教案

章末复习。知识与技能 理解并掌握本章知识,能用相关知识解决具体问题。过程与方法 通过梳理本章知识结构,回顾运用相似方法来解决一些实际问题的过程,加深运用所学知识解决一些实际问题的能力。情感态度 在运用相似解决实际问题的过程中,可增强学生的数学应用意识,感受数学应用价值 通过运用相似来证明具体问题的过...

人教版九年级数学下册第27章相似数学活动 导学案

数学活动。生活中的相似与位似。一 导学。1.活动导入。问题1 请大家猜猜学校教学楼前面的旗杆有多高?问题2 你知道美术字是怎样设计的吗?这节课我们将完成这两个活动。2.活动目标。1 通过测量旗杆高度,进一步理解相似三角形的判定和性质。2 通过设计美术字,进一步感受位似在实际生活中的运用。3.活动重 ...