一、选择题
1.【2012高考安徽文5】公比为2的等比数列{} 的各项都是正数,且 =16,则=
a) 1 (b)2 (c) 4 (d)8
答案】a2.【2012高考全国文6】已知数列的前项和为,,,则。
abcd)【答案】b
命题意图】本试题主要考查了数列中由递推公式求通项公式和数列求和的综合运用。
解析】由可知,当时得。
当时,有 ①
-②可得即,故该数列是从第二项起以为首项,以为公比的等比数列,故数列通项公式为,故当时,当时,,故选答案b
3.【2012高考新课标文12】数列满足an+1+(-1)n an =2n-1,则的前60项和为。
a)3690b)3660c)1845d)1830
答案】d命题意图】本题主要考查灵活运用数列知识求数列问题能力,是难题。
解析】【法1】有题设知。
②-①得=2,③+得=8,同理可得=2,=24,=2,=40,…,是各项均为2的常数列,,,是首项为8,公差为16的等差数列,{}的前60项和为=1830.
法2】可证明:
4.【2012高考辽宁文4】在等差数列中,已知a4+a8=16,则a2+a10=
a) 12 (b) 16 (c) 20d)24
答案】b解析】
故选b点评】本题主要考查等差数列的通项公式、同时考查运算求解能力,属于容易题。
5.【2012高考湖北文7】定义在(-∞0)∪(0,+∞上的函数f(x),如果对于任意给定的等比数列,仍是等比数列,则称f(x)为“保等比数列函数”。现有定义在(-∞0)∪(0,+∞上的如下函数:
①f(x)=x;②f(x)=2x;③;f(x)=ln|x |。
则其中是“保等比数列函数”的f(x)的序号为。
a.①②b.③④c.①③d.②④
答案】c 6.【2012高考四川文12】设函数,数列是公差不为0的等差数列,,则( )
a、0b、7c、14d、21
【答案】d.
解析]∵是公差不为0的等差数列,且。
点评]本小题考查的知识点较为综合,既考查了高次函数的性质又考查了等差数列性质的应用,解决此类问题必须要敢于尝试,并需要认真观察其特点。
7.【2102高考福建文11】数列的通项公式,其前n项和为sn,则s2012等于。
a.1006 b.2012 c.503 d.0
答案】a.考点:数列和三角函数的周期性。
难度:中。分析:本题考查的知识点为三角函数的周期性和数列求和,所以先要找出周期,然后分组计算和。
解答: ,所以。
即。8.【2102高考北京文6】已知为等比数列,下面结论种正确的是。
a)a1+a3≥2a2 (b)(c)若a1=a3,则a1=a2(d)若a3>a1,则a4>a2
答案】b【解析】当时,可知,所以a选项错误;当时,c选项错误;当时,,与d选项矛盾。因此根据均值定理可知b选项正确。
考点定位】本小题主要考查的是等比数列的基本概念,其中还涉及了均值不等式的知识,如果对于等比数列的基本概念(公比的符号问题)理解不清,也容易错选,当然最好选择题用排除法来做。
9.【2102高考北京文8】某棵果树前n年的总产量sn与n之间的关系如图所示,从目前记录的结果看,前m年的年平均产量最高,m的值为。
a)5(b)7(c)9(d)11
答案】c解析】由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选c。
考点定位】 本小题知识点考查很灵活,要根据图像识别看出变化趋势,判断变化速度可以用导数来解,当然此题若利用数学估计过于复杂,最好从感觉出发,由于目的是使平均产量最高,就需要随着的增大,变化超过平均值的加入,随着增大,变化不足平均值,故舍去。
二、填空题。
10.【2012高考重庆文11】首项为1,公比为2的等比数列的前4项和
【答案】15
解析】:考点定位】本题考查等比数列的前n项和公式。
11.【2012高考新课标文14】等比数列的前n项和为sn,若s3+3s2=0,则公比q=__
答案】命题意图】本题主要考查等比数列n项和公式,是简单题。
解析】当=1时,=,由s3+3s2=0得,=0,∴=0与{}是等比数列矛盾,故≠1,由s3+3s2=0得,,解得=-2.
12.【2012高考江西文13】等比数列的前n项和为sn,公比不为1。若a1=1,且对任意的都有an+2+an+1-2an=0,则s5
【答案】11
解析】由已知可得公比q=-2,则a1=1可得s5。
13.【2012高考上海文7】有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为,则
答案】。解析】由正方体的棱长组成以为首项,为公比的等比数列,可知它们的体积则组成了一个以1为首项,为公比的等比数列,因此, .
点评】本题主要考查无穷递缩等比数列的极限、等比数列的通项公式、等比数列的定义。考查知识较综合。
答案】。解析】据题,并且,得到,,,得到,解得(负值舍去).依次往前推得到。
点评】本题主要考查数列的概念、组成和性质、同时考查函数的概念。理解条件是解决问题的关键,本题综合性强,运算量较大,属于中高档试题。
15.【2012高考辽宁文14】已知等比数列{an}为递增数列。若a1>0,且2(a n+a n+2)=5a n+1 ,则数列{an}的公比q
答案】2命题意图】本题主要考查等比数列的通项公式,转化思想和逻辑推理能力,属于中档题。
解析】因为数列为递增数列,且。
16.【2102高考北京文10】已知为等差数列,sn为其前n项和,若,s2=a3,则a2=__sn=__
答案】, 解析】,所以,。
考点定位】 本小题主要考查等差数列的基本运算,考查通项公式和前项和公式的计算。
17.【2012高考广东文10】若等比数列满足,则。
答案】三、解答题。
18.【2012高考浙江文19】(本题满分14分)已知数列的前n项和为sn,且sn=,n∈n﹡,数列满足an=4log2bn+3,n∈n﹡.
1)求an,bn;
2)求数列的前n项和tn.
命题意图】本题主要考查等比数列、等差数列的概念,通项公式以及求和公式等基础知识,同时考查了学生的综合分析问题能力和运算求解能力。
解析】1) 由sn=,得。
当n=1时,;
当n2时, ,n∈n﹡.
由an=4log2bn+3,得,n∈n﹡.
2)由(1)知,n∈n﹡
所以,n∈n﹡.
19.【2012高考江苏20】(16分)已知各项均为正数的两个数列和满足:,1)设,,求证:数列是等差数列;
2)设,,且是等比数列,求和的值.
答案】解:(1)∵,
数列是以1 为公差的等差数列。
设等比数列的公比为,由知,下面用反证法证明。
若则,∴当时,,与(﹡)矛盾。
若则,∴当时,,与(﹡)矛盾。
综上所述,。∴
又∵,∴是公比是的等比数列。
若,则,于是。
又由即,得。
∴中至少有两项相同,与矛盾。∴。
考点】等差数列和等比数列的基本性质,基本不等式,反证法。
解析】(1)根据题设和,求出,从而证明而得证。
(2)根据基本不等式得到,用反证法证明等比数列的公比。
从而得到的结论,再由知是公比是的等比数列。最后用反证法求出。
20.【2012高考四川文20】(本小题满分12分)
已知数列的前项和为,常数,且对一切正整数都成立。
ⅰ)求数列的通项公式;
ⅱ)设,,当为何值时,数列的前项和最大?
解析]取n=1,得。
若a1=0,则s1=0, 当n
若a1, 当n
上述两个式子相减得:an=2an-1,所以数列是等比数列。
综上,若a1 = 0,
若a17分。
2)当a1>0,且。
所以,单调递减的等差数列(公差为-lg2)
则 b1>b2>b3>…>b6=
当n≥7时,bn≤b7=
故数列的前6项的和最大12分。
点评]本小题主要从三个层面对考生进行了考查。 第一,知识层面:考查等差数列、等比数列、对数等基础知识;第二,能力层面:
考查思维、运算、分析问题和解决问题的能力;第三,数学思想:考查方程、分类与整合、化归与转化等数学思想。
21.【2012高考湖南文20】(本小题满分13分)
某公司一下属企业从事某种高科技产品的生产。该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同。
公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产。设第n年年底企业上缴资金后的剩余资金为an万元。
ⅰ)用d表示a1,a2,并写出与an的关系式;
ⅱ)若公司希望经过m(m≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表示).
答案】解析】(ⅰ由题意得,ⅱ)由(ⅰ)得。
整理得 由题意,
解得。故该企业每年上缴资金的值为缴时,经过年企业的剩余资金为400元。
点评】本题考查递推数列问题在实际问题中的应用,考查运算能力和使用数列知识分析解决实际问题的能力。第一问建立数学模型,得出与an的关系式,第二问,只要把第一问中的迭代,即可以解决。
2023年高考数列练习题 理科
2013年全国各地高考试题汇编 理科 1.本小题满分12分 2013湖北。理 已知等比数列满足 求数列的通项公式 是否存在正整数使得若存在,求的最小值 若不存在,说明理由。2 本小题满分16分 2013江苏卷 设是首项为,公差为的等差数列,是其前项和 记,其中为实数 1 若,且成等比数列,证明 2 ...
2023年高考文科数学试题分类汇编 数列
2012高考文科试题解析分类汇编 数列。一 选择题。1.2012高考全国文6 已知数列的前项和为,则。abcd 2.2012高考新课标文12 数列满足an 1 1 n an 2n 1,则的前60项和为。a 3690b 3660c 1845d 1830 3.2012高考湖北文7 定义在 0 0,上的函...
2023年高考文科数学 数列
重庆文 16 已知为等差数列,且a1 a3 8,a2 a4 12.全国文 18 已知数列中,1,前n项和。求。求的通项公式。浙江文19.已知数列的前n项和为sn,且sn 2n2 n,n n 数列满足an 4log2bn 3,n n 1 求an,bn 2 求数列的前n项和tn。辽宁文17 在中,角a ...