一、选择题(每小题3分,共30分。下列各题给出的四个选项中,只有一项符合题意)
1.种菜能手李大叔种植了一批新品种黄瓜。为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜根数,得到下面的条形图,则抽查的这部分黄瓜株上所结黄瓜根数的中位数和众数分别是( )
a.13.5,20 b.15,5
c.13.5,14 d.13,14
2.下列计算正确的是( )
a. b.=6
c. d.=4
3.一次函数y=kx-k(k<0)的图象大致是( )
4.已知在abcd中,∠a+∠c=200°,则∠b的度数是( )
a.100° b.160° c.80° d.60°
5.如图,一次函数y=(m-2)x-1的图象经过第。
二、第三和第四象限,则m的取值范围是( )
6.如图,在正方形abcd中,点f为cd上一点,bf与ac交于点e,若∠cbf=20°,则∠aed的度数为( )
a.45° b.60° c.65° d.70°
7.下列说法:①在△abc中,若a2+b2≠c2,则△abc不是直角三角形;②若△abc是直角三角形,∠c=90°,则a2+b2=c2;③在△abc中,若a2+b2=c2,则∠c=90°;④直角三角形的两条直角边的长分别为5和12,则斜边上的高为,其中说法正确的有( )
a.4个 b.3个 c.2个 d.1个。
8.已知在△abc中,ab=17,ac=10,bc边上的高ad=8,则边bc的长为( )
a.9 b.21
c.6或15 d.9或21
9.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是( )
与y=x+与y=x+
与y=-x+
与y=-x+
10.如图,是一对变量满足的函数关系的图象。有下列3个不同的问题情境:
小明骑车以400 m/min的速度匀速骑了5 min,在原地休息了4 min,然后以500 m/min的速度匀速骑回出发地,设时间为x min,离出发地的距离为y km;
有一个容积为6 l的开口空桶,小亮以1.2 l/min 的速度匀速向这个空桶注水,注5 min 后停止,等4 min后,再以2 l/min的速度匀速倒空桶中的水,设时间为x min,桶内的水量为y l;
在矩形abcd中,ab=4,bc=3,动点p从点a出发,依次沿对角线ac、边cd、边da运动至点a停止,设点p的运动路程为x,当点p与点a不重合时,y=s△abp;当点p与点a重合时,y=0.
其中,符合图中所示函数关系的问题情境的个数为( )
a.0 b.1 c.2 d.3
二、填空题(每小题4分,共32分)
11.函数y=的自变量x的取值范围是 .
12.若正比例函数y=kx(k为常数,且k≠0)的函数值y随x的增大而减小,则k的值可以是 .(写出一个即可)
13.计算-3= .
14.某市广播电视局欲招聘播音员一名,对a,b两名候选人进行了两项素质测试,两人的两项测试成绩如下表所示。根据实际需要,广播电视局将面试、综合知识测试的得分按3∶2的权数比计算两人的总成绩,则 (填a或b)将被录用。
15.如图,在△abc中,∠acb=90°,m,n分别是ab,ac的中点,延长bc至点d,使cd=bd,连接dm,dn,mn.若ab=6,则dn= .
16.我市甲、乙两景点今年5月上旬每天接待游客的人数如图所示,甲、乙两景点日接待游客人数的方差大小关系为: .
17.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去。已知第一个矩形的面积为1,则第n个矩形的面积为 .
18.直线y=2x-1沿y轴平移3个单位长度,则平移后直线与y轴的交点坐标为 .
三、解答题(共58分)
19.(本小题满分8分)计算:
20.(本小题满分8分)如图,已知在矩形abcd中,m,n分别是边ad,bc的中点,e,f分别是线段bm,cm的中点。
1)求证:△abm≌△dcm;
2)判断四边形menf是什么特殊四边形,并证明你的结论;
3)当ad∶ab= 时,四边形menf是正方形(只写结论,不需证明).
21.(本小题满分10分)张明、王成两位同学八年级10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如下图所示:
利用图中提供的信息,解答下列问题:
1)完成下表:
2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是 .
3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议。
22.(本小题满分10分)在“美丽中国,清洁乡村”活动中,李家村村主任提出两种购买垃圾桶方案。方案1:
买分类垃圾桶,需要费用3 000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1 000元,以后每月的垃圾处理费用500元;设方案1的购买费和每月垃圾处理费共为y1元,设方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月。
1)直接写出y1,y2与x的函数解析式;
2)在同一平面直角坐标系内,画出函数y1,y2的图象;
3)在垃圾桶使用寿命相同的情况下,哪种方案省钱?
23.(本小题满分10分)如图,在平面直角坐标系xoy中,已知正比例函数y=x与一次函数y=-x+7的图象交于点a.
1)求点a的坐标;
2)设x轴上有一点p(a,0),过点p作x轴的垂线(垂线位于点a的右侧),分别交y=x和y=-x+7的图象于点b,c,连接oc,若bc=oa,求△obc的面积。
24.(本小题满分12分)如图,在矩形abcd中,ab=6,bc=4,过对角线bd中点o的直线分别交ab,cd边于点e,f.
1)求证:四边形bedf是平行四边形;
2)当四边形bedf是菱形时,求ef的长。
参***。一、选择题。
由统计图可知,共抽查了50株黄瓜,其中每株黄瓜上结14根黄瓜的最多,有20株,故众数为14根;从小到大排序后,第25株与第26株黄瓜上结的黄瓜根数分别为13根与14根,故其中位数为(13+14)÷2=13.5,因此这组数据的中位数为13.5,众数为14,从而选c.
由题意,得解得。
分别代入四个选项中给出的解析式,只有选项c中两解析式符合,故选c.
①根据情境知,前5 min应行驶了400×5=2 000(m),而图象上反应的是6 km,所以不正确;
根据情境知,前5 min注水1.2×5=6(l);此时注满,5~9 min时水的高度不变;9~12 min后,每分钟倒出2 l,3 min倒空,符合图象;
ac==5,则当0当x=5时,y==6;
当5当9所以函数情境符合图象。
二、填空题。
12.答案不唯一,如-1(只要k<0即可)
候选人a的成绩为=88(分);候选人b的成绩为=89(分),所以候选人b将被录用。
15.3 连接cm(图略).
m,n分别是ab,ac的中点,mn是△abc的中位线。
mn∥bc,mn=bc.
又∵cd=bd,∴cd=bc.
四边形dcmn为平行四边形,∴dn=cm.
在rt△abc中,∵cm是斜边ab上的中线,cm=ab=3,∴dn=cm=3.
16.> 根据图象的波动性即可得到。
17. 第二个矩形的面积是第一个矩形的面积的四分之一,第三个矩形的面积是第二个矩形的面积的四分之一,等于第一个矩形的面积乘,第四个矩形的面积是第三个矩形的面积的四分之一,等于第一个矩形的面积乘,依次类推,第n个矩形的面积等于第一个矩形的面积乘。
18.(0,2)或(0,-4)
三、解答题。
19.解 (1)原式==4-+2=4+.
2)原式=()
20.(1)证明在矩形abcd中,ab=dc,∠a=∠d=90°.
因为m是ad的中点,所以am=dm,所以△abm≌△dcm(sas).
2)解四边形menf是菱形。
证明:e,f,n分别是bm,cm,cb的中点,所以nf∥me,nf=me.
所以四边形menf是平行四边形。
由(1)得bm=cm,所以me=mf,所以menf是菱形。
21.解 (1)张明的平均成绩、方差分别是80,60;王成的平均成绩、方差分别是80,260.
2)优秀率高的同学是王成。
3)建议合理即可,答案不唯一,如王成的学习要持之以恒,保持稳定;张明的学习还需要加一把劲,提高优秀率。
22.解 (1)y1=250x+3 000,y2=500x+1 000.
对于方案1:买分类垃圾桶,需要费用3 000元,以后每月的垃圾处理费用250元,交费时间为x个月,则y1与x的函数解析式为y1=250x+3 000;同样对于方案2可得y2与x的函数解析式为y2=500x+1 000.
八年级上册初中数学人教版期末模拟试卷
一 单选题 共12题 共30分 1 如图,大正方形的边长为m,小正方形的边长为n,若用x y表示四个相同长方形的两边长 x y 给出以下关系式 x y m x y n xy 其中正确的关系式的个数有 a 0个。b 1个。c 2个。d 3个。2 运动会上,某班级买了两种矿泉水,其中甲种矿泉水共花费40...
数学人教版八年级上期末复习
期末作业1 1 画出如图所示的物体的三视图 2 分别画出图中两个几何体的主视图,左视图和俯视图,并在俯视图中用数字表示该位置的小立方体的个数 3 图中三视图所表示的物体是。4 下列图形中左视图是的是 5 已知y a与x b成正比例 其中a b都是常数 试说明 y是x的一次函数。6 已知y a与x b...
人教版八年级下册数学人教版八年级数学 勾股定理说课稿
勾股定理 的说课稿。大地二中。张清泉。尊敬的各位评委 各位教师 你们好!今天我说课的课题是 勾股定理 本课选自九年义务教育人教版八年级下册初中数学第十七章第一节的第一课时。下面我从教学背景分析与处理 教学策略 教学流程等方面对本课的设计进行说明。一 教学背景分析。1 教材分析。本节课是学生在已经掌握...