2019-2020学年八年级数学下册 7.1 二次根式的性质(2)导学案青岛版。
课前准备:多**。
课本内容:p6--p8
学习目标:1、经历二次根式的性质=.(a≥0,b≥0);=a≥0,b>0)的发现过程,体验归纳、类比的思想方法。
2、了解二次根式的上述两个性质。
3、会用二次根式的性质将有关的二次根式进行化简。
一、自主预习课本p6--p8,与小组同学交流讨论,从而**规律。
比较左右两边的等式,你发现了什么?你能用字母表示你的发现吗?
二、思考问题,总结归律(语言叙述,式子表达)1、一般地,二次根式还有下面的性质:
.(a≥0,b≥0)
(a≥0,b>0)
三:巩固练习:
4.拓展提升:
3) (4)(a≥-1)
由此可见,合理应用二次根式的性质,可以帮助我们简化实数的运算。
四.达标测评。
1.选择题:
1).的成立的条件是( )
0,b>0 ≥ 0 >0 ≥ 0
2). 下列格式正确的是( )
b≥ b>0
b>0 b≤0
(3).下列各式正确的是。
a.(-0.5 b.=-0.5
c. =0.5 d.- 0.52.计算:
(5)(x≥1)
五:布置作业。
八年级数学《二次根式》
杰瑞学院 二次根式 专题训练。一 细心填一填 每小题3分,共30分 1 1 当m 时,式子有意义。2 若a 0,则。3 计算。4 计算。5 长方形的一边的长是,面积为6,则另一边的长为。8 计算。9 当x 时,二次根式有最小值。10 观察下列式子 请你将猜想到的规律用含自然数n n 1 的代数式表示...
八年级数学二次根式
第十六章 二次根式。一般地,我们把形同 这样的式子叫做二次根式,称为二次根号。考点1.二次根式有意义。例 当是一个怎么样的实数时,在实数范围内有意义?解 由,得。当时,在实数范围内有意义。练习 当是一个什么样的实数时,下列各式在实数范围内有意义?考点2.二次根式的计算。例 计算下列各式。解 1 1....
八年级数学下册《二次根式》教学反思
学生对二次根式的化简掌握不好,比如被开方数32不能一次分解为16乘2,而是分解为4乘8,不能分解尽。比如108,98等数的分解还不能完全掌握。当被开方数是分数时,学生掌握的更不好,比如当被开方数的分母是8,27时学生很多都是乘8,27,计算量很大,还易错。实际上乘2,3即可。在合并同类二次根式时,合...