华东师大版八年级数学《同底数幂的乘法》学案。
学习目标:理解同底数幂相乘的法则并会运用。
学习重点:同底数幂的乘法运算。
学习难点:同底数幂的乘法法则的推导及应用。
学习过程:1、课前热身。
1、a 表示的意义是什么?其中a、n、a分别叫做什么?
二、自学**。
1、做一做:(完成下表)
2、观察上表,你发现了什么?
1)以上四个算式的共同特点是同底数幂相乘,计算结果的底数、指数,与已知算式中的底数、指数之间的关系是。
2)根据以上发现,你能直接写出以下各算式的结果吗?
a5·a12m ·(n
3)得出结论:一般地,如果字母m、n都是正整数,那么。
am·an = a·a·a…a)·(a·a·a…a) =a·a·a…a = am+n
个a __个a _个a
幂的运算法则。
am·anm、n是正整数)
你能用语言描述这个性质吗。
4)升华:法则把同底数幂的乘法转化为进行计算(降级)
5)注意:这里的底数a可以是任意的实数。
6)试一试:m、n、p是正整数,你会计算am·an ·ap吗?
三、小组合作,课堂展示。
1、 计算:
3)x3m+1·xm4)(a+b)4·(a+b)
2、辨析:下列运算是否正确?不正确的,请改为正确的答案。
1)x3·x5= x152) b7+ b7=b 14
3)a5- a2=a34) 2x3+ x3=2x6
3、计算:1) (x)2x32) 23×(-2)4-23×23
四、当堂检测。
1.计算。1)2 7 × 232)(-3) 4 × 3)73)a 2 × a3 × a4
(4) (x+y) 3× (x+y) (5)9 ×3×276)(b-a)·(a-b)
2.m16可以写成( )
a.m8+m8b.m8·m8 c.m2·m8 d.m4·m4
3.下列计算中,正确的是( )
a.5a3-a3=5b.2m·3n=6 m+n
c.(a-b)3·(a-b)2=(a-b)6 d.-a2·(-a)3=a5
4.若xm=3,xn=5,则xm+n的值为( )
a.8 b.15 c.53 d.35
5.如果a2m-1·am+2=a7,则m的值是( )
a.2 b.3 c.4 d.5
6.计算:-22×(-2)2=__
7.计算:am·an·apx)(-x2)(-x3)(-x4
8.若82a+3·8b-2=810,则4a+2b的值是。
五、能力拓展。
1)如果2=16,求x的值。
2)如果a=3, (a) =5, 求a 的值。
八年级数学学案
科目 数学主备教师 水晓蓉。课题 1.学习目标2.学习重难点3.考点解析。年级 八年级班级 班使用学生 小组评价等级 使用日期 月日。复习第十六章二次根式 2 1.掌握二次根式的加减乘除的运算性质以及化简。2.会用二次根式的性质解决问题。二次根式的运算性质及其应用二次根式的计算。1 二次根式的乘法法...
八年级数学学案
8.3 怎样判断三角形全等。课前延伸 1 什么是全等三角形?2 全等三角形的性质是什么?课内 学习目标 1.掌握角边角判定方法 角角边推论的内容 2.知道能asa及其推论判断两个三角形全等。学习重点 asa这一判定方法的 与应用。学习难点 由asa推出aas这一判定方法,并能运用。一 学习过程 学习...
八年级数学学案
灵宝四中2009 2010学年度下期八年级数学学案8 主备人 张娟娟审核人 段亚丽使用人时间 3月3日。16.2.3整数指数幂 p18 20 一 学习目标 1.理解负整数指数幂。abc 2 正整数指数幂公式中的指数扩展到全体整数。二 自学提示 一 复习旧知 正整数指数幂有以下运算性质 am an m...