教学设计:
18.2.2菱形的定义、性质。
一、教材分析。
菱形的性质》是人教版八年级下册第十八章第18.2.2的内容。
它是在学生掌握了平行四边形的性质与判定,又学习了特殊的平行四边形——矩形,具备了初步的观察、操作等活动经验的基础上讲授的。这一节课既是前面所学知识的继续,又是后面学习正方形等知识的基础,起着承上启下的作用。
二、学情分析。
我选择的是初二(13)班,该班级是年段的普通班,学生的情况是中等学生较多,优秀生只有三名,还有十三名学习上落后的学生。长期以来我都坚持做好培养学生良好的学习习惯和自主学习的能力的工作。
基于对教材和班级学情的分析,我认为本节课的教学有以下几个方面需要把握好的。
三、教学目标。
1、让学生在通过折叠活动,在操作、观察、分析的**过程中得到菱形的性质,用轴对称性质证明菱形的特殊性质;
2、掌握菱形的性质,会根据菱形的性质进行相关的证明和计算。
四、教学重难点。
重点是:菱形特殊性质的**及运用。
难点是:菱形特殊性质的**和灵活运用。
重难点突破过程与教学方法。
针对本节课的特点,我主要利用折纸活动,来增强对菱形定义的理解及对轴对称图形的利用;用轴对称的方法证明菱形的特殊性质,作业纸填空的方式降低证明的难度。帮助学生学会运用观察、分析、比较、归纳、概括等方法,得出解决问题的方法,使传授知识与培养能力融为一体,使学生不仅学到科学的**方法,进一步增进主动**的意识,体会说理的基本方法。应用例题的选择,让学生体验数学活动**于生活又服务于生活,体会菱形的图形美,提高学生的学习兴趣。
在教学过程中引导学生经过观察、思考、探索、交流获得知识,形成能力。在教学过程中注意创设思维情境,借助多**进行演示,以增加课堂容量和教学的直观性,更好的理解菱形的性质,解决教学难点。
五、课前准备。
1、学生自己准备小剪刀,统一发放学生每人一张邻边不相等的平行四边形白纸,每人一张课堂作业纸。
2、多**课件,三角板,圆规。
六、教学过程。
一)导入:前面我们学习了平行四边形,通过平行四边形角的特殊化(把一个角变成直角),变成了特殊的平行四边形——矩形。那么把平行四边形的边特殊化——把它的邻边变成等长的,又是什么特殊的平行四边形呢?
演示课本55页图18.2—6由平行四边形变成菱形的的动画过程及生活中各种菱形的应用**。
定义:有一组邻边相等的平行四边形叫做菱形(板书课题及定义)
推理格式:(1)判定格式。
在abcd中,ab=bc
abcd是菱形(菱形定义)
2)性质格式。
在菱形abcd 中。
四边形abcd是平行四边形,ab=bc(菱形定义)(板书)
注:板书画菱形的图案一定要用圆规作四边相等的四边形。
二)**菱形的性质。
1、菱形是特殊的平行四边形,具有平行四边形所有的性质。(板书)
平行四边形性质列表:(多**演示)
2、利用轴对称**菱形的特殊性质。(板书):菱形的特殊性质。
问题:1、如何把手上邻边不等的平行四边形纸片变成菱形呢?
课件及实物演示:按定义“一组邻边相等”,如图可以利用对折让两邻边ab与bc重合(a点落在c点,重合的边得到相等的线段),沿着cd裁去长出的一部分平行四边形cdef,即可得到菱形abcd。
问题:2、把菱形纸片沿着另一条对角线ac对折,两边图形还重合吗?
3、菱形是轴对称图形吗?
4、菱形有几条对称轴?
板书):(1)菱形是轴对称图形,有两条对称轴,在它的对角线(折痕)所在的直线上。
**1:在你的菱形纸上写出图中菱形abcd内所有的全等三角形,与小组内的同学交流完成课堂作业纸中“**部分”第1题证明的填写。
已知:菱形abcd中,ac、bd交于o点。
求证。证明:∵菱形abcd是轴对称图形,对角线ac,bd所在的是它的对称轴。
△abc图中其他的全等三角形还有。
ab=ad,ab=bc(其它相等的线段。
1=∠2, ∠5其它相等的角。
ab=bc=cd=ad,ac bd,ao= ac,bo= bd,菱形abcd的面积=4×=4×ao×bo= .
学生合作**,完成小组代表上台展示讨论结果。
归纳:(板书)
2)菱形四条边都相等。
3)菱形两条对角线互相垂直,并且每一条对角线平分一组对角。
4)菱形的面积=底×底上的高=对角线乘积的一半。
**2:填写课堂作业纸“**部分”第题,展示正确答案。
菱形的性质列表(多**演示)
**3:小组交流课堂作业纸“**部分”第5题菱形性质的推理格式。
3、应用。课本56例3 如图, 菱形花坛abcd的边长为20m,∠abc=60°,沿着菱形的对角线修建了两条小路ac和bd,求两条小路的长(结果保留小数点后2位)和花坛的面积(结果保留小数点后1位)。
多**演示,强调推理格式)
解:∵花坛abcd的形状是菱形。
ac⊥bd,∠abo=∠abc=×600=300
在rt△oab中,ao=ab=×20=10(m) bo= (m)
花坛的两条小路长。
ac=2ao=20 (m)
bd=2bo=20 ≈34.64(m)
花坛的面积。
ac·bd= ×20×20=200≈346.4()
归纳解题方法:有关菱形问题可转化为直角三角形或等腰三角形的问题来解决。
练习1:课堂作业纸的“过关练习”,组长统计组员做题情况,展示讲评,教师赋分。小组合作,帮扶出错的同学,反思存在问题。
三)总结提升。
1、怎样从平行四边形得到菱形的?菱形的性质。
2、菱形的性质中哪些是一般平行四边形没有的。
3、请用图表示平行四边形、矩形、菱形之间的从属关系。
4、有关菱形问题可转化为直角三角形或等腰三角形的问题来解决。
练习2:做课堂作业纸的“提升练习”
四)课后作业。
课本60页习题第5题,61页第11题。
选做:用其他方法证明菱形的四边相等,对角线互相垂直且每一条对角线平分一组对角(提示:用菱形定义及平行四边形性质)
五)板书设计。
18.2.2菱形的定义与性质(1)
1、定义:有一组邻边相等的平行四边形叫做菱形。
推理格式:(1)判定格式。
在abcd中,ab=bc
abcd是菱形(菱形定义)
2)性质格式。
在菱形abcd 中。
四边形abcd是平行四边形,ab=bc(菱形定义)
二、菱形的性质:
1、菱形是特殊的平行四边形,具有平行四边形所有的性质。
2、菱形的特殊性质:
1)菱形是轴对称图形,有两条对称轴,在它的对角线(折痕)所在的直线上。(对称性)
2)菱形的四条边都相等(边)
3)菱形的对角线互相垂直,并且每一条对角线平分一组对角。(对角线)
4)菱形的面积=底×高=对角线乘积的一半。(面积)
三、练习。六、反思。
教学活动探索过程中,小组活动对于时间的安排上没有把握太好,容易导致后部分内容处理起来,在时间上有点紧。
附:课堂作业纸。
**部分。1、写出图中菱形abcd内所有的全等三角形,与小组内的同学交流并填写证明菱形特殊性质的过程。
已知:菱形abcd,ac、bd交于o点。
求证。证明:∵菱形abcd是轴对称图形,对角线ac,bd所在的是它的对称轴。
△abc图中其他的全等三角形还有。
ab=ad,ab=bc(其它相等的线段。
1=∠2, ∠5其它相等的角。
ab=bc=cd=ad,ac bd,ao= ac,bo= bd,菱形abcd的面积=4×=4×ao×bo= .
2、上题图中等腰三角形有。
直角三角形有全等三角形有对。
3、由菱形的两条对角线的长,能计算它的面积吗?计算方法与平行四边形面积的计算方法相比有什么异同?
新人教版数学八年级下册第十八章
14 2分 2006临汾 如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去 若第一个正方形边长为1,则第n个正方形的面积是。二 选择题 共4小题,每题3分,共12分 15 3分 如图,平行四边形abcd中,ae平分 dab,b ...
人教八年级下册第十八章
勾股定理 综合测试。一 精心选一选 每小题3分,共30分 1 有一对角线长为200cm的长方形黑板,小明测得长为160cm,这块黑板的宽为 a 180 cm b.120 cm c.160 cm d.64 cm 2.下面四组数中是勾股数的一组是 a.4,5,6 b.7,8,9 c.5,12,13 d....
八年级数学下册第十八章说课稿
八年级下册数学第十八章说课标说教材。大荔县安仁初中赵聪亚 尊敬的各位评委 老师们 大家好!我叫赵聪亚,来自安仁初中。今天我说课的内容是人教版数学八年级下册第十八章,我将按照说课标 说教材 说建议的流程进行。数学课程内容分为数与代数 图形与几何 统计与概率 综合与实践,我将说的是图形与几何中的勾股定理...