2024年初中毕业生模拟考试数学试卷(3)
一、选择题1. -2的绝对值是( )a. 2 b. -2 c. d. -
2. 作为世界文化遗产的长城,其总长大约为6700000m,将6700000
用科学计数法表示为( )
a. 67×104b. 6.7×105c. 6.7×106d. 0.67×107
3. 如图(1),直线l与直线a,b相交,且a∥b,∠1=110°,则∠2的度数是( )
a. 20° b. 70° c. 90° d. 110°
4. 若关于x的不等式组的解表示在数轴上如图(2)所示,则这个不等式组的解集( )
a. x≤>1c. 1≤x<2d. 15. 某校10名篮球运动员的年龄情况,统计如下表:
则这10名篮球运动员年龄的中位数为( )a. 12 b. 13 c. 13.5d. 14
6. 下列图形中,是轴对称图形但不是中心对称图形的是( )
a. 等边三角形b. 平行四边形c. 正六边形 d. 圆。
7. 如图(3),菱形abcd中,对角线ac与bd相交于o,oe∥dc且交bc于点e,ad=6cm,则oe的长为( )a. 6cm b.
4cm c. 3cm d. 2cm
8. 下列运算正确的是( )
a.(a3)2=a5 b. a2·a3=a5 c.a6÷a2=a3 d.3a2-2a2=1
9. 如图(4),已知:在⊙o中,oa⊥bc,∠aob=70°,则∠adc的度数为( )
a. 70° b. 45c. 35° d. 30°
10. 已知b<0时,二次函数y=ax2+bx+a2-1的图象如下列四个图之一所示。
根据图象分析,a的值等于( )
a. -2 b. -1 c. 1 d. 2
二、填空题11. 因式分解:mn2-2mn+m
12. 一个正多边形的一个外角为30°,则它的内角和为。
13. 若2x-3y-1=0,则5-4x+6y的值为 。
14. 某校共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是足球,则可估计该校学生中最喜欢的课外体育运动项目为足球的学生有人。
15. 已知扇形的圆心角为120°,弧长为6π,则扇形的面积是。
16. 如图(5),将矩形abcd绕点a旋转至矩形ab′c′d′位置,此时ac′的中点恰好与d点重合,ab′交cd于点e。若ab=6,则△aec的面积为。
三、解答题(一)17. 计算:2sin600+-(1+(π2018)0
18. 先化简,再求值: -其中x=-3
19. 为进一步促进义务教育均衡发展,某县加大了基础教育经费的投入,已知2024年该县投入基础教育经费5000万元,2024年投入基础教育经费7200万元。求该县这两年投入基础教育经费的年平均增长率。
四、解答题(二)20. 如图(6),已知在△abc中,∠a=90°。(1)用圆规和直尺作出⊙p,使圆心p在ac边上,且与 ab,bc两边都相切(保留作图痕迹,不写作法和证明);
2)若∠b=60°,ab=3,求⊙p的面积(结果保留π)。
21. 如图(7),△abc与△cde都是等边三角形,点e、f分别在ac、bc上,且ef∥ab。
(1)求证:四边形efcd是菱形;(2)设cd=4,求d、f两点间的距离。
22. 端午节吃粽子是中华民族的传统习惯。农历五月初五早晨,小王的妈妈用不透明袋子装着一些粽子(粽子除食材不同外,其他一切相同),其中糯米粽两个,还有一些薯粉粽,现小王从中任意拿出一个是糯米粽的概率为。
(1)求袋子中薯粉粽的个数;
(2)小王第一次任意拿出一个粽子(不放回),第二次再拿出一个粽子,请你用树形图或列表法,求小王两次拿到的都是薯粉粽的概率。
五、解答题(三)23. 如图(8),已知反比例函数(x>0)的图象经过点a、b,点a的坐标为(1,2),过点a作ac∥y轴,ac=1(点c位于点a的下方),过点c作cd∥x轴,与函数的图象交于点d,过点b作be⊥cd,垂足e**段cd上,连接oc、od。
(1)求该反比例函数的解析式;
(2)求△ocd的周长;
(3)若be=ac,求ce的长。
24. 如图(9),⊙o是△abc的外接圆,o点在bc边上,∠bac的平分线交⊙o于点d,连接bd、cd,过点d作bc的平行线,与ab的延长线相交于点p。
(1)求证:pd是⊙o的切线;
(2)求证:△pbd∽△dca;
(3)当ab=6,ac=8时,求线段pb的长。
25. 如图(10),在平面直角坐标系中,抛物线y=ax2+bx+c经过a(-3,0)、b(1,0)、c(0,3)三点,其顶点为d,连接ad,点p是线段ad上一个动点(不与a、d重合),过点p作y轴的垂线,垂足点为e,连接ae。
(1)求抛物线的函数解析式,并写出顶点d的坐标;
(2)如果p点的坐标为(x,y),△pae的面积为s,求s与x之间的函数关系式,直接写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取到最大值时,过点p作x轴的垂线,垂足为f,连接ef,把△pef沿直线ef折叠,点p的对应点为点p′。
求出p′的坐标;
判断p′是否在该抛物线上。
九年级数学模拟试卷
红寺堡回中2009 2010学年度九年级数学。模拟试卷 三 试卷说明 考试时间 120分钟,总分 120分 一 选择题 本题共8个小题,每小题3分,满分24分 1.如下书写的四个汉字,其中为轴对称图形的是 a bcd.2 如图所示的圆柱体,其主视图 左视图和俯视图中至少有一个是 a 三角形 b 四边...
九年级数学模拟试卷
数学模拟试题卷 3 一 选择题 本大题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只有一项是满足题目要求的,请将正确选项填涂在答题卷的相应位置 1 的倒数是 abcd.2 当地时间2015年5月12日,尼泊尔再次发生7.5强烈 一周内,通过铁路部门已运送救灾物资15810吨,将158...
九年级数学模拟试卷
2012年广场中学九年级模拟会考。数学试题。满分 120分 考试时间 120分钟。一 选择题 本题共10小题,每小题 分,共30分 1 下列各数中,比 1小的数是。a 0 b.2cd.1 2 如图是一个正六棱柱,它的俯视图是。3 某种生物细胞的直径约为0.00056,将0.00056用科学记数法表示...