1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式y=ax^2y=a(x-h)^2y=a(x-h)^2+ky=ax^2+bx+c
顶点坐标(0,0)(h,0)(h,k)
-b/2a,[4ac-b^2]/4a)
对称轴x=0x=hx=hx=-b/2a
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);
2)当△=b^2-4ac>0,图象与x轴交于两点a(x,0)和b(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根.这两点间的距离ab=|x-x|另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-a |(a为其中一点)
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.6.用待定系数法求二次函数的解析式。
1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.1.(北京西城区)抛物线y=x2-2x+1的对称轴是()
a)直线x=1(b)直线x=-1(c)直线x=2(d)直线x=-2考点:二次函数y=ax2+bx+c的对称轴.评析:因为抛物线y=ax2+bx+c的对称轴方程是:
y=-,将已知抛物线中的a=1,b=-2代入,求得x=1,故选项a正确.
另一种方法:可将抛物线配方为y=a(x-h)2+k的形式,对称轴为x=h,已知抛物线可配方为y=(x-1)2,所以对称轴x=1,应选a.
2.(北京东城区)有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4;
乙:与x轴两个交点的横坐标都是整数;
丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式:.考点:
二次函数y=ax2+bx+c的求法评析:设所求解析式为y=a(x-x1)(x-x2),且设x1<x2,则其图象与x轴两交点分别是a(x1,0),b(x2,0),与y轴交点坐标是(0,ax1x2).∵抛物线对称轴是直线x=4,x2-4=4 - x1即:
x1+ x2=8①
s△abc=3,∴(x2- x1)·|a x1 x2|= 3,即:x2- x1=②
②两式相加减,可得:x2=4+,x1=4-
x1,x2是整数,ax1x2也是整数,∴ax1x2是3的约数,共可取值为:±1,±3。当ax1x2=±1时,x2=7,x1=1,a=±
当ax1x2=±3时,x2=5,x1=3,a=±
因此,所求解析式为:y=±(x-7)(x-1)或y=±(x-5)(x-3)即:y=x2-x+1或y=-x2+x-1或y=x2-x+3或y=-x2+x-3
说明:本题中,只要填出一个解析式即可,也可用猜测验证法。例如:
猜测与x轴交点为a(5,0),b(3,0)。再由题设条件求出a,看c是否整数。若是,则猜测得以验证,填上即可。
5.(河北省)如图13-28所示,二次函数y=x2-4x+3的图象交x轴于a、b两点,交y轴于点c,则△abc的面积为()a、6b、4c、3d、1
考点:二次函数y=ax2+bx+c的图象及性质的运用。
评析:由函数图象可知c点坐标为(0,3),再由x2-4x+3=0可得x1=1,x2=3所以a、b两点之间的距离为2。那么△abc的面积为3,故应选c。图13-28
6.(安徽省)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.
1x2+2.6x+43(0<x<30)。y值越大,表示接受能力越强。
1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低?
2)第10分时,学生的接受能力是什么?(3)第几分时,学生的接受能力最强?考点:二次函数y=ax2+bx+c的性质。
评析:将抛物线y=-0.1x2+2.
6x+43变为顶点式为:y=-0.1(x-13)2+59.
9,根据抛物线的性质可知开口向下,当x≤13时,y随x的增大而增大,当x>13时,y随x的增大而减小。而该函数自变量的范围为:0≤x≤30,所以两个范围应为0≤x≤13;13≤x≤30。
将x=10代入,求函数值即可。由顶点解析式可知在第13分钟时接受能力为最强。解题过程如下:
解:(1)y=-0.1x2+2.
6x+43=-0.1(x-13)2+59.9
所以,当0≤x≤13时,学生的接受能力逐步增强。当13<x≤30时,学生的接受能力逐步下降。(2)当x=10时,y=-0.
1(10-13)2+59.9=59。第10分时,学生的接受能力为59。
(3)x=13时,y取得最大值,所以,在第13分时,学生的接受能力最强。
9.(河北省)某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:
1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出x的取值范围);
3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
解:(1)当销售单价定为每千克55元时,月销售量为:500–(55–50)×10=450(千克),所以月销售利润为。
(55–40)×450=6750(元).
2)当销售单价定为每千克x元时,月销售量为:[500–(x–50)×10]千克而每千克的销售利润是:(x–40)元,所以月销售利润为:
y=(x–40)[500–(x–50)×10]=(x–40)(1000–10x)=–10x2+1400x–40000(元),∴y与x的函数解析式为:y =–10x2+1400x–40000.
3)要使月销售利润达到8000元,即y=8000,∴–10x2+1400x–40000=8000,即:x2–140x+4800=0,解得:x1=60,x2=80.
当销售单价定为每千克60元时,月销售量为:500–(60–50)×10=400(千克),月销售成本为:
40×400=16000(元);
当销售单价定为每千克80元时,月销售量为:500–(80–50)×10=200(千克),月销售单价成本为:
40×200=8000(元);
由于8000<10000<16000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元.
九年级数学二次函数 16 二次函数复习
第周星期班别姓名学号 一 填空。1 若二次函数y m 1 x2 m2 2m 3的图象经过原点,则m 2 函数y 3x2与直线y kx 3的交点为 2,b 则k b 3 抛物线y x 1 2 2可以由抛物线y x2向 方向平移 个单位,再向 方向平移 个单位得到。4 把y x2 x 化为y a x h...
九年级数学二次函数 16 二次函数复习
第周星期班别姓名学号 一 填空。1 若二次函数y m 1 x2 m2 2m 3的图象经过原点,则m 2 函数y 3x2与直线y kx 3的交点为 2,b 则k b 3 抛物线y x 1 2 2可以由抛物线y x2向 方向平移 个单位,再向 方向平移 个单位得到。4 把y x2 x 化为y a x h...
九年级数学二次函数
二次函数。一 知识概述 看初中数学总复习52页,填空 轻巧46页。二 例题讲解 一 根据函数性质判定函数图象之间的位置关系。例1.已知 函数y a0 的图像所示,试判断 a 0,b 0,c 0,0,二 比较大小。例2.已知点a 5,b 2,c 3,都是二次函数图像上的点,则。三 抛物线与x轴 y轴的...