函数第二课时。
教学目标:1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;
2、使学生分清常量与变量,并能确定自变量的取值范围。
3、会求函数值,并体会自变量与函数值间的对应关系。
4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法。
5、通过函数的教学使学生体会到事物是相互联系的。是有规律地运动变化着的。
教学重点:了解函数的意义,会求自变量的取值范围及求函数值。
教学难点:函数概念的抽象性。
教学过程:(一)引入新课:
上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数。
生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?
1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系。
2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系。
解:1、y=30n
y是函数,n是自变量。
2、 ,n是函数,a是自变量。
(二)讲授新课。
刚才所举例子中的函数,都是利用数学式子即解析式表示的。这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义。如第一题中的学生数n必须是正整数。
例1、求下列函数中自变量x的取值范围.
分析:在(1)、(2)中,x取任意实数, 与都有意义。
(3)小题的是一个分式,分式成立的条件是分母不为0.这道题的分母是 ,因此要求 .
同理(4)小题的也是分式,分式成立的条件是分母不为0,这道题的分母是 ,因此要求且 .
第(5)小题, 是二次根式,二次根式成立的条件是被开方数大于、等于零。 的被开方数是 .
同理,第(6)小题也是二次根式, 是被开方数,.
解:(1)全体实数。
(2)全体实数。
(4) 且
小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零。
注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要即可。教师可将解题步骤设计得细致一些。
先提问本题的分母是什么?然后再要求分式的分母不为零。求出使函数成立的自变量的取值范围。
二次根式的问题也与次类似。
但象第(4)小题,有些同学会犯这样的错误,将答案写成或 .在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用。限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”.
说明这里与是并且的关系。即2与-1这两个值x都不能取。
例2、自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每次一辆0.3元。
(1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;
(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围。
解:(1)
(x是正整数,
(2)若变速车的辆次不小于25%,但不大于40%,则
收入在1225元至1330元之间。
总结:对于反映实际问题的函数关系,应使得实际问题有意义。这样,就要求联系实际,具体问题具体分析。
对于函数 ,当自变量时,相应的函数y的值是 .60叫做这个函数当时的函数值。
例3、求下列函数当时的函数值:
解:1)当时,
(2)当时,
(3)当时,
(4)当时,
注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有唯一确定的值与之对应。以此加深对函数的理解。
(二)小结:
这节课,我们进一步地研究了有关函数的概念。在研究函数关系时首先要考虑自变量的取值范围。因此,要求大家能掌握解析式含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并能求出其相应的函数值。
另外,对于反映实际问题的函数关系,要具体问题具体分析。
作业:习题13.2a组
教学设计 函数
申报序号。陕西省教育学会第五届优秀教学设计稿件封面。申报序号。14.1.2函数。一 教材依据。义务教育课程标准实验教科书数学八年级上册,14.1.2函数,95 98页。二 设计思路。指导思想 本节课我以积极推进素质教育为指导思想,以科学态度和创新精神为 以课程教材改革为核心,以课堂教学为主阵地,以学...
函数教学设计
3 通过对函数概念的学习,培养学生的语言表达能力。情感与态度目标。1 在函数概念形成的过程中,培养学生联系实际 善于观察 乐于探索和勤于思考的精神。教学重点 1 掌握函数的概念,以及函数的三种表示方法 2 会判断两个变量之间是否是函数关系。教学难点 1 对函数概念的理解 2 把实际问题抽象概括为函数...
函数教学设计
函数 第一课时 教学设计。教材分析 函数在高中数学教程中起着承上启下的作用,同时对学生的后继的学习有重大的影响,因此它在高中学习中应引起充分和广泛的重视。函数的分析要从三个角度,第一个就是初中阶段的变量与变量的依赖关系,第二个角度就是用集合对应的观点来刻画函数,这就是高中学习阶段的一个重点,也是难点...