小学六年级比和比例姓名:
例1 已知3∶(x-1)=7∶9,求x。
例2 六年级一班的男、女生比例为3∶2,又来了4名女生后,全班共有44人。求现在的男、女生人数之比。
分析与解:原来共有学生44-4=40(人),由男、女生人数之比为3∶2知,如果将人数分为5份,那么男生占3份,女生占2份。由此求出。
女生增加4人变为16+4=20(人),男生人数不变,现在男、女生人数之比为 24∶20=6∶5。
在例2中,我们用到了按比例分配的方法。将一个总量按照一定的比分成若干个分量叫做按比例分配。按比例分配的方法是将按已知比分配变为按份数分配,把比的各项相加得到总份数,各项与总份数之比就是各个分量在总量中所占的分率,由此可求得各个分量。
例3 配制一种农药,其中生石灰、硫磺粉和水的重量比是1∶2∶12,现在要配制这种农药2700千克,求各种原料分别需要多少千克。
分析:总量是2700千克,各分量的比是1∶2∶12,总份数是1+2+12=15,
答:生石灰、硫磺粉、水分别需要180,360和2160千克。
在按比例分配的问题中,也可以先求出每份的量,再求出各个分量。如例3中,总份数是1+2+12=15,每份的量是2700÷15=180(千克),然后用每份的量分别乘以各分量的份数,即用180千克分别乘以1,2,12,就可以求出各个分量。
例4 师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟。完成任务时,师傅比徒弟多加工多少个零件?
分析与解:解法很多,这里只用按比例分配做。师傅与徒弟的工作效率。
有多少学生?
按比例分配得到。
例6 某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15元,小轿车10元。某日通过该收费站的大客车和小客车数量之比是5∶6,小客车与小轿车之比是4∶11,收取小轿车的通行费比大客车多210元。
求这天这三种车辆通过的数量。
分析与解:大客车、小轿车通过的数量都是与小客车相比,如果能将5∶6中的6与4∶11中的4统一成[4,6]=12,就可以得到大客车∶小客车∶小轿车的连比。由5∶6=10∶12和4∶11=12∶33,得到大客车∶小客车∶小轿车=10∶12∶33。
以10辆大客车、12辆小客车、33辆小轿车为一组。因为每组中收取小轿车的通行费比大客车多10×33-30×10=30(元),所以这天通过的车辆共有210÷30=7(组)。这天通过大客车=10×7=70(辆),小客车=12×7=84(辆),小轿车=33×7=231(辆)。
练习:1.一块长方形的地,长和宽的比是5∶3,周长是96米,求这块地的面积。
2.一个长方体,长与宽的比是4∶3,宽与高的比是5∶4,体积是450分米3。问:长方体的长、宽、高各多少厘米?
3.一把小刀售价6元。如果小明买了这把小刀,那么小明与小强的钱数之比是3∶
5;如果小强买了这把小刀,那么小明与小强的钱数之比是9∶11。问:两人原来共有多少钱?
5.甲、乙、丙三人分138只贝壳,甲每取走5只乙就取走4只,乙每取走5只丙就取走6只。问:最后三人各分到多少只贝壳?
6.一条路全长60千米,分成上坡、平路、下坡三段,各段路程的长度之比是1∶2∶3,某人走各段路程所用的时间之比是3∶4∶5。已知他走平路的速度是5千米/时,他走完全程用多少时间?
7.某俱乐部男、女会员的人数之比是3∶2,分为甲、乙、丙三组,甲、乙、丙三组的人数之比是10∶8∶7。如果甲组中男、女会员的人数之比是3∶1,乙组中男、女会员的人数之比是5∶3,那么丙组中男、女会员的人数之比是多少?
小学六年级奥数教案比和比例
小学六年级比和比例姓名 例已知 x 7 9,求x,小学六年级奥数教案比和比例。例六年级一班的男 女生比例为 又来了4名女生后,全班共有44人。求现在的男 女生人数之比。分析与解 原来共有学生44 4 40 人 由男 女生人数之比为 知,如果将人数分为5份,那么男生占份,女生占份。由此求出。女生增加4...
六年级奥数比和比例
例题1 有三盒珠子,每盒的珠子的数量互不相同。小王从第一个盒子内取出该盒珠子数量的,又从第二个盒子内取出该盒珠子数量的,再从第三个盒子内取出该盒珠子数量。最后,这三个盒子内剩下的珠子的数量都相等。请问小王从这三个盒子内所取出的珠子数量之总和的最小可能的值是什么?分析依据题意有a b c,则a b c...
六年级奥数比和比例
六年奥数综合练习题十二答案 比和比例关系 比和比例,是小学数学中的最后一个内容,也是学习更多数学知识的重要基础。有了 比 这个概念和表达方式,处理倍数 分数等问题,要方便灵活得多。我们希望,小学同学学完这一讲,对 除法 分数 比例实质上是一回事,但各有用处 有所理解。这一讲分三个内容 一 比和比的分...