四年级数学讲义。
奥数:容斥原理(1)
教学目标:1、理解容斥原理,会画图分析其中关系,正确的找出答案。
2、培养学生的逻辑思维和数学思考能力。
3、培养学生良好的书写习惯。
一、教学衔接。
二、教学内容。
一)知识介绍。
容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b的事物的个数=na+nb-nab。
二)例题精讲。
例1、一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!
”有37人举手。又问:“谁做完数学作业?
请举手!”有42人举手。最后问:
“谁语文、数学作业都没有做完?”没有人举手。求这个班语文、数学作业都完成的人数。
思路导航】完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。所以,这个班语文、数作业都完成的有:
79-48=31人。
例2、某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。问多少个同学两题都答得不对?
分析与解答】已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。
所以,两题都答得不对的有36-33=3人。
例3、某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?
分析与解答】要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。
例到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?
分析与解答】从1到100的自然数中,减去5或6的倍数的个数。从1到100的自然数中,5的倍数有100÷5=20个,6的倍数有16个(100÷6=16……4),其中既是5的倍数又是6的倍数(即5和6的公倍数)的数有3个(100÷30=3……10)。因此,是6或5的倍数的个数是16+20-3=33个,既不是5的倍数又不是6的倍数的数的个数是:
100-33=67个。
例5、光明小学举办学生书法展览。学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法作品共有多少幅?
分析与解答】由题意知,24幅作品是。
一、二、三、四、六年级参展作品的总数,22幅是。
一、二、三、四、五年级参展作品的总数。24+22=46幅,这是一个。
五、六年级和两个。
一、二、三、四年级参展的作品数,从其中去掉。
五、六两个年级共参展的10幅作品,即得到两个。
一、二、三、四年级参展作品的总数,再除以2,即可求出其他年级参展作品的总数。(24+22-10)÷2=18幅。
三、教学练习。
1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。其中语文成绩优秀的有65人,数学优秀的有87人。语文、数学都优秀的有多少人?
2、五(1)班有40个学生,其中25人参加数学小组,23人参加科技小组,有19人两个小组都参加了。那么,有多少人两个小组都没有参加?
3、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。两样都会的有多少人?
4、在1到200的全部自然数中,既不是5的倍数又不是8的倍数的数有多少个?
5、科技节那天,学校的科技室里展出了每个年级学生的科技作品,其中有110件不是一年级的,有100件不是二年级的,一、二年级参展的作品共有32件。其他年级参展的作品共有多少件?
四、教学小结。
六、课后练习。
1、学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。这个文艺组一共有多少人?
2、某校选出50名学生参加区作文比赛和数学比赛,结果3人两项比赛都获奖了,有27人两项比赛都没有获奖。已知作文比赛获奖的有14人,问数学比赛获奖的有多少人?
3、三年级一班参加合唱队的有40人,参加舞蹈队的有20人,既参加合唱队又参加舞蹈队的有14人。这两队都没有参加的有10人。请算一算,这个班共有多少人?
4、在1到130的全部自然数中,既不是6的倍数又不是5的倍数的数有多少个?
5、六(1)儿童节那天,学校的画廊里展出了每个年级学生的图画作品,其中有25幅画不是三年级的,有19幅画不是四年级的,三、四两个年级参展的画共有8幅。其他年级参展的画共有多少幅?
小学四年级奥数思维训练 容斥原理
小学四年级奥数思维训练 容斥原理。专题简析 容斥问题涉及到一个重要原理 包含与排除原理,也叫容斥原理。即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。例1 某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。问多少个同学两题都答得...
四年级容斥原理
四年级名校第四讲容斥原理。教学目标 1掌握容斥原理的基本解题方法。2能简单的画出容斥原理的图。3培养学生的逻辑思维能力。教学重点。用画图的方法去解容斥原理。教学难点。在做较复杂的容斥原理的题的时,如何用画图的方法去解答。教学过程 导入 在我们日常生活中经常会碰到重复的时候,比如我们的爱好。像老师既喜...
小学四年级奥数容斥问题
容斥问题 一 容斥问题涉及到一个重要的原理 包含与排除原理,也称为容斥原理,即当两个计数部分有重复包含时,为了不重复地计数,应从它们的和中排除重复部分。这一讲我们先介绍容斥原理1对n个事物,如果采用两种不同的分类标准 按性质a分类与性质b分类 如图1 那么,具有性质a或性质b的事物的个数 na nb...