一.选择题(每小题3分,共30分) 在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分。
1. 若x=2是关于x的一元二次方程的一个解,则m的值是( )
a.6b.5c.2d.-6
2. 对于反比例函数y = 下列说法正确的是( )a.图象经过点(1,-1) b.图象位于第。
二、四象限c.图象是中心对称图形 d.当x<0时,y随x的增大而增大。
3.如图,空心圆柱的左视图是( )
4.反比例函数y = 与y = 在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于a、b两点,连接oa、ob,则△aob的面积为( )a. b.2 c.3 d.1
5. 如图(二)所示,□abcd中,对角线ac,bd相交于点o,且ab≠ad,则下列式子不正确的是( )
c. bo=od d.∠bad=∠bcd
6. 如图,在梯形abcd中,ab∥cd,ad=bc,点e,f,g,h分别是ab,bc,cd,da的中点,则下列结论一定正确的是( )
a. ∠hgf = ghe b. ∠ghe = hef c. ∠hef = efg d. ∠hgf = hef
7.函数的图象与直线没有交点,那么k的取值范围是( )
a. b. c. d.
8. 如图,等边三角形的边长为3,点为边上一点,且,点为边上一点若,则的长为( )a. b. c. d.1
9. 如图,矩形纸片abcd中,已知ad=8,折叠纸片使ab边与对角线ac重合,点b落在点f处,折痕为ae,且ef=3,则ab的长为( )
a.3 b.4 c.5 d.6
10. 根据图5中①所示的程序,得到了y与x的函数图象,如图5中②,若点m是y轴正半轴上任意一点,过点m作pq∥x轴交图象于点p、q,连接op、oq,则以下结论:
x<0时,y=
△opq的面积为定值。
x>0时,y随x的增大而增大。
mq=2pm
∠poq可以等于90°
其中正确结论是( )
abcd.②③
二.填空题(每小题3分,共15分) 将结果直接填写在答题卡相应的横线上。
11. 将变为的形式,则。
12. 如图,菱形abcd的边长是2㎝,e是ab中点,且de⊥ab,则菱形abcd的面积为___
13. 已知正方形abcd,以cd为边作等边△cde,则∠aed的度数是 .
14. 如图,一根直立于水平地面上的木杆ab在灯光下形成影子,当木杆绕a按逆时针方向旋转直至到达地面时,影子的长度发生变化.设ab垂直于地面时的硬长为ac(假定ac>ab),影长的最大值为m,最小值为n,那么下列结论:①m>ac;②m=ac;③n=ab;④影子的长度先增大后减小.
其中,正确的结论的序号是。
15.如图,矩形abcd的边ab与y轴平行,顶点a的坐标为(1,2),点b与点d在反比例函数的图象上,则点c的坐标为 .
三.解答题 (共9小题,满分75分)
16. (6分)(2010 重庆江津)在等腰△abc中,三边分别为、、,其中,若关于的方程有两个相等的实数根,求△abc的周长.
17. (6分)如图,在等腰直角三角形abc中,∠abc=90°,d为ac边的中点,过d点作de⊥df,交ab于e,交bc于f。若ae=4,fc=3,求ef长。
18.(6分)汽车产业是我市支柱产业之一,产量和效益逐年增加。据统计,2023年我市某种品牌汽车的年产量为6.
4万辆,到2023年,该品牌汽车的年产量达到10万辆。若该品牌汽车年产量的年平均增长率从2023年开始五年内保持不变,则该品牌汽车2023年的年产量为多少万辆?
19.(8分)如图已知e、f分别是□abcd的边bc、ad上的点,且be=df.
1) 求证:四边形aecf是平行四边形;
2) 若bc=10,∠bac=90°,且四边形aecf是菱形,求be的长 .
20.(9分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象相交于a、b两点.求:
1)根据图象写出a、b两点的坐标并求出反比例函数的解析式;(2分)
2)根据图象写出:当x为何值时,一次函数值大于反比例函数值.(3分)
(3)求 △aob的面积。(4分)
21. (9分)如图,ab和de是直立在地面上的两根立柱,ab=5m,某一时刻ab在阳光下的投影bc=3m.
(1)请你在图中画出此时de在阳光下的投影;
2)在测量ab的影长时,同时测量出de在阳光下的影长为6cm,请你计算de的长.
22.(9分)如图,矩形abcd中,点p是线段ad上一动点,o为bd的中点, po的延长线交bc于q.
1)求证: op=oq;(4分)
2)若ad=8厘米,ab=6厘米,p从点a出发,以1厘米/秒的速度向d运动(不与d重合).设点p运动时间为t秒,请用t表示pd的长;并求t为何值时,四边形pbqd是菱形.(5分)
23.(11分)如图.已知a、b两点的坐标分别为a(0,),b(2,0).直线ab与反比例函数的图象交于点c和点d(﹣1,a).
1)求直线ab和反比例函数的解析式.
2)求∠aco的度数.
3)将△obc绕点o逆时针方向旋转α角(α为锐角),得到△ob′c′,当α为多少时,oc′⊥ab,并求此时线段ab’的长.
24. (11分)如图1,将三角板放在正方形abcd上,使三角板的直角顶点e与正方形abcd的顶点a重合,三角板的一边交cd于点f,另一边交cb的延长线于点g.
(1)求证:ef=eg;
2)如图2,移动三角板,使顶点e始终在正方形abcd的对角线ac上,其他条件不变.(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;
3)如图3,将(2)中的“正方形abcd”改为“矩形abcd”,且使三角板的一边经过点b,其他条件不变,若ab=a,bc=b,求的值.
图1图2图3
2023年联考数学试卷新
12 如图,在平行四边形abcd中,平分交边于点,则线段 的长度为 13.如图,d是ab边上的一点,将 abc沿过点d的直线折叠,使点a落在bc边上的点f处,且折痕de bc,若 5 则 bdf的度数是。14.如图,是一次函数y kx b与反比例函数y 的图像,则关于x的方程kx b 的解为。15....
初三五校联考数学试卷
完卷时间 100分钟,满分 150分 一 单项选择题 本大题共6题,每题4分,满分24分 1 在中,分别为 的对边,则有 a b c d 2 二次函数的图象向右平移3个单位,再向上平移2个单位,那么所得的二次函数解析式为 a b c d 3 二次函数的图像如图所示,则点在 a 第一象限b 第二象限c...
十校联考数学试卷 1
九年级十校联考数学试题。2009年2月。考生注意 请把答案一律写在答卷纸上,否则无效。一 选择题 本题包括12小题,每小题3分,共36分,每小题只有一个正确答案 1 下表给出了武汉市2009年元月份某一周中每天的最低气温,其中最低气温是 a 0 b 2 c 3 d 4 2 某不等式的解集在数轴上表示...