四年级数学A班奥数专题 相遇问题思维新探

发布 2023-02-02 06:37:28 阅读 6383

四年级数学a班奥数专题->相遇问题思维新探。

一、统一部分量并采用比差的思维方法。

例1 甲、乙两人同时从a、b两地相向而行,①1小时后两人共走全程。

分析与解:这道相遇问题的条件比较特殊,从①知两人同时相向而行1

一时间这个量基本办法有二个:其一,将②中时间改为两人各走1小时,乙停下,甲继续走20分钟,两人正好走完全程;其二将①中时间改为两人各走。

=2(小时)。

二、以部分量的比的变化为线索并采用多方沟通的思维方法。

例2 甲、乙两人分别从a、b两地同时出发,相向而行,出发时他们的速度比是3∶2,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达b地时,乙离a还有14千米,那么a、b两地间的距离是多少千米?

分析与解:这道题可画示意图(3)。其突出的特点是甲、乙两人在相遇前后速度量的比有变化;出发至相遇其速度比是3∶2;相遇后各自提速。

20%及30%,其速度比是3×(1+20%)∶2×(1+30%)=18∶13。将速度比与路程比沟通,即其对应的路程比分别是3∶2和18∶13。路程比3∶2即可看作将全程平均划成5段,相遇时甲走3段,乙走2段;路程比18∶13,可看作甲从相遇点到达b点的这段路程分成18等份,此时乙走13等份。

将段数与份数沟通,即由图(3)知18份=2段,这样全程5段就可分为45份,依此可得乙离a14千米时,所占份数是:45-(13+18)

四年级奥数相遇问题

巧解相遇问题。姓名。基本公式 路程 速度 时间速度 路程 时间。时间 路程 速度总路程 甲的路程 乙的路程。典型例题 例1 华华和兰同时从甲 乙两地出发,相对走来,华华每分钟走60米,兰兰每分钟走50米,经过三分钟两人相遇,甲乙两地相距多少米?分析与解答 甲 乙。根据上图,套用公式 路程 速度 时间...

四年级奥数相遇问题

四年级秋季尖子班。第九讲相遇问题。相遇问题是行程问题中的一种情况,这类应用题的特点是 两个运动着的物体从两地出发相向运动,越行越接近,到一定的时候两者可以相遇 两个物体的运动一般视为匀速运动,它们往往是同时出发,到相遇时所用的时间相同。解答相遇问题的主要关系式是 速度和 相遇时间 总路程总路程 相遇...

四年级奥数相遇问题

四年级秋季尖子班。第九讲相遇问题。相遇问题是行程问题中的一种情况,这类应用题的特点是 两个运动着的物体从两地出发相向运动,越行越接近,到一定的时候两者可以相遇 两个物体的运动一般视为匀速运动,它们往往是同时出发,到相遇时所用的时间相同。解答相遇问题的主要关系式是 速度和 相遇时间 总路程总路程 相遇...