§14.2 勾股定理。
教学目标】一、知识目标。
1.在探索基础上掌握勾股定理。
2.掌握直角三角形中的边边关系和三角之间的关系。
二、能力目标。
1.已知两边,运用勾股定理列式求第三边。
2.应用勾股定理解决实际问题(探索性问题和应用性问题)。
3.学会简单的合情推理与数学说理,能写出简单的推理格式。
三、情感态度目标。
学生通过适当训练,养成数学说理的习惯,培养学生参与的积极性,逐步体验数学说理的重要性。
重点难点】重点:在直角三角形中,知道两边,可以求第三边。
难点:应用勾股定理时斜边的平方等于两直角边的平方和。
疑点:灵活运用勾股定理。
教学设想】课型:新授课。
教学思路:探索结论-验证结论-初步应用结论-应用结论解决实际问题。
课时安排】2课时。
教学设计】第一课时
本课目标】1.在探索基础上掌握勾股定理。
2.掌握直角三角形中的边边关系和三角之间的关系。
教学过程】1.情境导入。
从观察课本中图14.1.1和图14.1.2入手引入勾股定理。
2、课前热身。
**图14.1.1和图14.1.2,数一数三块面积之间的关系,体验勾股定理的内涵。
3、合作**。
1)整体感知。
由观察课本中图14.1.1和图14.1.2入手得出勾股定理;通过在图14.1.3中动手操作证实勾股定理;通过对本课本第50页例1的探索求解巩固勾股定理。
2)四边互动。
互动1:师:你们能数出图14.1.1中三块面积p、q、r的数值吗?数数看。
生:根据图形进行操作.
由此得出:以直角三角形两直角边为边长的两个正方形的面积和等于以斜边为边长的正方形的面积。
师生共同归纳: ,即两直角边的平方和等于斜边的平方。
互动2:师:你们能数出图14.1.2中三块面积p、q、r的数值吗?数数看.
生:根据图形进行操作.
由此得出:以直角三角形两直角边为边长的两个正方形的面积和等于以斜边为边长的正方形的面积.
师生共同归纳, ,即两直角边的平方和等于斜边的平方.
互动3:师:由上述操作你发现了一般规律了吗?
生:略。明确:在一个直角三角形中:两直角边的平方和等于斜边的平方。
互动4:师:展示课本中图14.1.3.
师:在上图中画出直角三角形abc,用直尺量量斜边是多长好吗?
生:每人画出一个三角形,并动手测量后在小组中交流讨论,然后举手回答问题。
明确:师生合作通过操作证明勾股定理:.
例题教学:例1:如图14.1.4,将长为5.41米的梯子ac斜靠在墙上,bc长为2.16米,求梯子上端a到墙的底端b的距离ab.(精确到0.01米)
师:你会用勾股定理解这道题吗?试试看。
生:操作后相互交流。
明确:在一个直角三角形中:两直角边的平方和等于斜边的平方。
注:在实际问题中往往需要求取近似值。
解:略。4、达标反馈。
1)在直角△abc中,∠c=,a=3,b=4,则c值是 ,理由是
2)在直角△abc中,∠b=,a=3,b=4,则c值是 ,理由是
3)在△abc中, a=3,b=4,c=5,则△abc是。
5、学习小结。
1)内容总结。
直角三角形三边满足勾股定理:两直角边的平方和等于斜边的平方。
注意:应用勾股定理时应特别注意哪个角是直角。
2)方法归纳。
让学生经历观察、操作、交流合作、合理猜想等体验吸取知识。
6、实践活动:利用勾股数确定直角的方法在测量中的应用,如测量河宽时可用勾股数确定直角,再利用直角三角形知识解决实际问题。
7、巩固练习:课本第14.2中第题。
板书设计】第二课时
本课目标】1.通过拼图,用面积的方法说明勾股定理的正确性。
2.通过实例应用勾股定理,培养学生的知识应用技能。
教学过程】1.情境导入。
多****如何制作相同的直角三角形纸板。
2、课前热身。
让学生分组练习用四块相同的直角三角形板拼成正方形。
3、合作**。
1)整体感知。
通过相同直角三角形的拼图体验,让学生找出多种不同的方法来说明勾股定理的正确性,通过运用勾股定理解题,训练培养学生应用知识的技能,通过阅读材料让学生体验勾股定理的妙用。
2)四边互动:出示课本中图14.1.5和14.1.6。
互动1:师:你会拼出如图14.1.6所示的图形吗?
生:讨论交流,举手回答问题。
师:你能运用面积列出等式说明勾股定理吗?
生:讨论交流,举手回答问题,并尝试说理。
明确:①大正方形面积减去小正方形面积等于四个直角三角形面积。
②大正方形面积减去四个直角三角形面积等于小正方形面积。
③大正方形面积等于四个直角三角形面积加上小正方形面积。
④结论是。互动2:出示课本中图14.1.7和14.1.8.
师:你会拼出图14.1.7吗。
生:动用操作。
师:你会用面积等式说明勾股定理吗?
生:讨论交流,举手回答并说理。
明确:①大正方形面积减去小正方形面积等于四个直角三角形面积。
②大正方形面积减去四个直角三角形面积等于小正方形面积。
③大正方形面积等于四个直角三角形面积加上小正方形面积。
④结论是。互动3:
师:出示如右图所示的图形.
你会拼成如图所示的图形吗?它需要几块三角板?
生:独立尝试后,在小组之间交流,并举手回答问题.
师:你会列出面积等式说明勾股定理吗?
生:讨论交流,举手回答问题,并尝试说理.
明确:①梯形面积减去等腰直角三角形面积等于两直角三角形面积。
梯形面积减去两个直角三角形面积等于等腰直角三角形。
梯形面积等于两个直角三角形面积加上等腰直角三角形的面积。
结论是。例题教学:例2 如图14.
1.9,为了求出湖两岸的a、b两点之间的距离,一个观测者在点c设桩,使三角形abc恰好为直角三角形。通过测量,得到ac长160米,bc长128米。
问从点a穿过湖到点b有多远?
解在直角三角形abc中,ac=160,bc=128,根据勾股定理可得。
96(米)
答:从点a穿过湖到点b有96米。
明确:在直角三角形中,两直角边的平方和等于斜边的平方:
4、达标反馈。
配套练习。5、学习小结。
1)内容总结。
可以通过拼图,得到正方形,再根据面积相等列出等式,从而验证勾股定理;
运用勾股定理可以解决许多实际问题;
运用三角形相似或全等知识能证明直角三角形中的勾股定理。
2)方法归纳。
通过动手操作、合作交流和亲身体验培养学生食好的学习方法,逐步养成优良的学习。
6、实践活动:动手制作直角三角形,并以三边长度为边作一个你喜欢的正多边形,研究它们面积之间的关系。
7、巩固练习:课本练习。
板书设计】
八年级数学勾股定理教案
勾股定理。教学任务分析。课前准备。教学过程设计。教学设计。1 本节课是一节数学活动课,教学要求是动态的,教师可以根据实际情况灵活把握,本节课并没有要求一次到位,也体现了本册书 螺旋上升 的思想。2 本节课的重点体现在勾股定理的 和进一步验证无理数的存在性,使学生掌握数学问题的研究方法,培养 精神及互...
八年级数学勾股定理教案
14.1.2 勾股定理 2 天秀中学初二 班姓名学号年月日。一教学目标 1.知识目标 会用三角形三边关系判断直角三角形。2.能力目标 体会数形结合的数学思想和由特殊到一般的思想方法 3.情感目标 让学生进一步感受数学之美丽,之乐趣 二教学重点 难点 教学重点 利用三角形三边关系判断直角三角形 教学难...
八年级数学勾股定理教案
课题 18 1勾股定理。教材 义务教育课程标准实验教科书 数学 八年级下册 人民教育出版社 说课教师 四川省南充市第七中学汪敏。教学任务。教学准备。教学流程安排。教学过程设计。教学设计说明。勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学...