高一数学函数练习题

发布 2022-07-05 23:25:28 阅读 9349

1、与函数y=x表示相同函数的是 [

则、值域不同,排除c.而。

评注判断两个函数是否相同,要看函数的三要素:定义域,值域,对应法则.其中对应法则不能仅仅从解析式上考虑,要分析其对应法则的本质.

2、求下列函数的定义域。

5)设f(x)的定义域为[0,2],求函数f(x+a)+f(x-a)(a>0)的定义域.

定义域是空集,函数是虚设的函数。

2)由函数式可得。

函数的定义域是,定义域是一个孤立的点(-1,0)的横坐标。

3)∵x2-4≠0

x≠±2函数定义域为(-∞2)∪(2,+2)∪(2,+∞

4)从函数式可知,x应满足的条件为。

函数的定义域为。

5)∵f(x)定义域为[0,2]

所以f(x+a)+f(x-a)中x应满足。

又∵a>0,若2-a≥a,则a≤1

即0<a≤1时,f(x+a)+f(x-a)的定义域为。

当a>1时,x∈

评注求f(x)的定义域就是求使函数f(x)有意义的x的取值范围,定义域表示法有:不等式法,集合法,区间表示法等.

3、求下列函数的值域。

解 (1)由原式可化为。

2)将函数变形,整理可得:

2yx2-4yx+3y-5=0

当y=0时,-5=0不可能,故y≠0

x∈rδ=(4y)2-4×2y×(3y-5)≥0

即y(y-5)≤0解得0≤y≤5

而y≠00<y≤5

故函数值域为(0,5]

此二次函数对称轴为t=-1

评注求函数值域方法很多,此例仅以三个方面给出例子.学习时要分析函数式的结构特征,从而确定较简单的求值域的方法.

4、(1)已知f(x)=x2,g(x)为一次函数,且y随x值增大而增大.若f[g(x)]=4x2-20x+25,求g(x)的解析式。

解:(1)∵g(x)为一次函数,且y随x值增大而增大。

故可设g(x)=ax+b(a>0)

f[g(x)]=4x2-20x+25

(ax+b)2=4x2-20x+25

即:a2x2+2abx+b2=4x2-20+25

解得 a=2,b=-5

故g(x)=2x-5

于是有t的象是t2-1,即f(t)=t2-1(t≥1)

故f(x)=x2-1(x≥1)

f(x+1)=(x+1)2-1=x2+2x(x≥0)

f(x2)=x4-1(x≤-1或x≥1)

评注对于(1)是用待定系数法求函数的解析式,要根据题意设出函数的形式,再利用恒等式的性质解之.求函数解析式的常用方法还有拼凑法,代换法(如(2)),解方程组等.

5、如图1-7,灌溉渠的横断面是等腰梯形,底宽及两边坡总长度为a,边坡的倾角为60°.

1)求横断面积y与底宽x的函数关系式;

评注本题是有关函数的实际问题,其方法是把实际问题用数学的形式表示出来,建立变量之间的函数关系.

6、设x≥0时,f(x)=2,x<0时,f(x)=1又。

解:当0<x<1时,x-1<0,x-2<0

当1≤x<2时,x-1≥0,x-2<0

当x≥2时,g(x)=2

评注分段函数关键是在x的不同条件下计算方法不同,不要认为是三个不同函数.

7、判断下列各式,哪个能确定y是x的函数?为什么?

1)x2+y=1 (2)x+y2=1

解 (1)由x2+y=1得y=1-x2,它能确定y是x的函数.

于任意的x∈,其函数值不是唯一的.

8、下列各组式是否表示同一个函数,为什么?

解 (1)中两式的定义域部是r,对应法则相同,故两式为相同函数.

2)、(3)中两式子的定义域不同,故两式表示的是不同函数.

4)中两式的定义域都是-1≤x≤1,对应法则也相同,故两式子是相同函数.

9、求下列函数的定义域:

10、已知函数f(x)的定义域是[0,1],求下列函数的定义域:

求实数a的取值范围.

为所求a的取值范围.

12、求下列函数的值域:

1)y=-5x2+1(3)y=x2-5x+6,x∈[-1,1)

4)y=x2-5x+6,x∈[-1,3]

9)y=|x-2|-|x+1|

解 (1)∵x∈r,∴-5x2+1≤1,值域y≤1.

6)定义域为r

7)解:定义域x≠1且x≠2

y-4)x2-3(y-4)x+(2y-5)=0 ①

当y-4≠0时,∵方程①有实根,∴δ0,即9(y-4)2-4(y-4)(2y-5)≥0

化简得y2-20y+64≥0,得。

y<4或y≥16

当y=4时,①式不成立.

故值域为y<4或y≥16.

函数y在t≥0时为增函数(见图2.2-3).

9)解:去掉绝对值符号,其图像如图2.2-4所示.

由图2.2-4可得值域y∈[-3,3].

求函数值域的方法:

1°观察法:常利用非负数:平方数、算术根、绝对值等.

2°求二次函数在指定区间的值域(最值)问题,常用配方,借助二次函数的图像性质结合对称轴的位置处理.假如求函数f(x)=ax2+bx+c(a>0),在给定区间[m,n]的值域(或最值),分三种情况考虑:

如例5)可做公式用.

法求y的范围(如例6-7).

为二次函数求值域.但要注意中间量t的范围(如例6-8).

6°分离有界变量法:从已知函数式中把有界变量解出来.利用有界变量的范围,求函数y的值域(如例6-6).

7°图像法(如例6-9):

由于求函数值域不像求函数定义域那样有一定的法则和程序可寻,它要根据函数解析式的不同特点灵活用各种方法求解.

解 (2)∵f(-7)=10,∴f[f(-7)]=f(10)=100.

说明本例较简单,但主要用意是深刻理解函数符号f(x)的意义.求分段函数值时,要注意在定义域内进行.

例8】根据已知条件,求函数表达式.(1)已知f(x)=3x2-1,求①f(x-1),②f(x2).

2)已知f(x)=3x2+1,g(x)=2x-1,求f[g(x)].求f(x).

4)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,求f(x).

5)设周长为a(a>0)的等腰三角形,其腰长为x,底边长为y,试将y表示为x的函数,并求它的定义域和值域.

1)分析:本题相当于x=x-1时的函数值,用代入法可求得函数表达式.

解 ∵f(x)=3x2-1

f(x-1)=3(x-1)2-1=3x2-6x+2

f(x2)=3(x2)2-1=3x4-1

2)分析:函数f[g(x)]表示将函数f(x)中的x用g(x)来代替而得到的解析式,∴仍用代入法求解.

解由已知得f[g(x)]=3(2x-1)2+1=12x2-12x+4

法(或观察法).

x=(t+1)2代入原式有f(t)=(t+1)2-6(t+1)-7

t2-4t-12 (t≥-1)

即f(x)=x2-4x-12 (x≥-1)

说明解法二是用的换元法.注意两种方法都涉及到中间量的问题,必须要确定中间量的范围,要熟练掌握换元法.

4)分析:本题已给出函数的基本特征,即二次函数,可采用待定系数法求解.

解设f(x)=ax2+bx+c(a≠0)

由f(0)=2,得c=2.由f(x+1)-f(x)=x-1,得恒等式2ax+

说明待定系数是重要的数学方法,应熟练掌握.

5)解:∵2x+y=a,∴y=a-2x为所求函数式.

三角形任意两边之和大于第三边,得2x+2x>a,又∵y>0,说明求实际问题函数表达式,重点是分析实际问题中数量关系并建立函数解析式,其定义域与值域,要考虑实际问题的意义.

高一数学函数练习题

1 与函数y x表示相同函数的是 则 值域不同,排除c 而。评注判断两个函数是否相同,要看函数的三要素 定义域,值域,对应法则 其中对应法则不能仅仅从解析式上考虑,要分析其对应法则的本质 2 求下列函数的定义域。5 设f x 的定义域为 0,2 求函数f x a f x a a 0 的定义域 定义域...

高一数学函数练习题

高一数学必修一练习题。一 选择题。1 满足的所有集合a有 个。a.1b.2c.3d.4 2 a,b是全集u的非空真子集,ab,ab a,则ab等于 a a b bc 空集 d u 3 已知集合,则 a.bcd.4 定义集合a b的一种运算 若,则中的所有元素数字之和为。a 9b 14c 18d 21...

高一数学练习题

一 选择题 本大题共8小题,每题6分,共48分 四个选项中只有一个是正确的 1.点在圆的内部,则的取值范围是 或。2.若表示圆,则的取值范围是 r3.设直线过点,且与圆相切,则的斜率是 abcd 4.给出下列各函数值 其中符号为负的有 a b c d 5.函数的值域是 a b c d 6.函数的定义...